MITSUBISHI

Mitsubishi Low Voltage Air Circuit Breaker AE-SS AE-SH

Introduction of the new advanced Super AE series, heralding a new age of Air Circuit Breakers

With the highly advanced information technologies, dependability as well as safety and ease of handling of the electrical power supply are ever-growing requirements. The recent introduction of systemized and intelligent buildings, upgrading, and space-saving, and severe safety standard of power distribution has become a major subject within the electrical power supply industry. To cope with all these circumstances, Mitsubishi now presents the Super AE series Low Voltage Air Circuit Breakers.

Contents

Features
Main unit features. \qquad . 3 ~ 4
Electronic trip relay features 5 ~ 8
External view and
\qquad
■Product introduction.......................... 11 ~ 12
Product specification
Specification <IEC60947-2 Ics/lcu> 13 ~ 14
Specification
<JIS C8372, JIS C8370, Shipping standard> 15 ~ 16
-Connecting methods 17
Charging methods 18

- Accessories

For breaker unit .. 19 ~ 22
For drawout frame \qquad .23 ~ 24
Electronic trip relay
Specification table \qquad .25 ~ 26
Characteristics setting table 27 ~ 28
General use (C.S.SL types). \qquad .29 ~ 32
Generator protection use (M type). \qquad 33 ~ 34
Electronic trip relay accessories 35 ~ 36
External accessories \qquad .37 ~ 39

- Circuit diagram of the electronic trip relay 40

Operating Characteristics
General use (C type) \qquad
General use (S type) \qquad .42 ~ 43
General use (SL type) \qquad .44 ~ 45
Generator protection use(M type)............. 46 ~ 47
Special use (B-C0 type). \qquad48
Tripping characteristics setting
Setting procedure . \qquad
How to adjust the trip Relay of AE-SS 50
Tripping characteristics check 54
\qquad
Outline Dimensions
Draw-out type .. 57 ~ 61
Fixed type. \qquad .62 ~ 63
Panel cut, drawout handle, terminal adapter 64
Technical information \qquad .65 ~ 70
Ordering information
\qquad
\qquad
\qquad
Generator protection use (M type).................... 74

■ Main unit features

Easier Operation

Plenty Type Composition

-The addition of 4000A, 5000A and 6300 A frame to the universal series makes applicable for a wide range of types from 630A to 6300 A
The addition of high breaking capacity (AE-SH) series (630A-3200A frame) has enabled the design of economic sequences.

Expanded selective interruption range

With the increased short-time current rating, the selective interruption range can be expanded with the use of the electronic trip relays with MCR function

Full moulding

Since the breaker is fully insulated with mouldings, it is safe to use for a wide range of applications.

Long service life

10,000 mechanical open/close operations for all types. (Except for AE4000-SS~AE6300-SS, AE4000-SSC

Zero arc space

Arc exhaust space to the outside of the breaker is drastically reduced for safer operation (AE630-SS ~ AE3200-SS, AE4000-SSC $\leq 600 \mathrm{VAC}$)

Reverse connection available
-Line and Load is not defined on the Main circuit terminals. Therefore reverse connection is available without any limitation.

More complete New AE4000-SSC

- The new AE4000-SSC which is smaller and economical makes fill up the AE-SS series. AE4000-SSC has realized smaller and lighter than AE4000-SS

Number of Operating cycles has been increased (2000 cycles $\rightarrow 5000$ cycles).
note 1 : Only 3 -pole type is available.
note 2: The Max. rated current is 3600 A on JIS C8372

Electronic trip relay features (1/2)

Multi functions available

1 Electronic trip relay series

- Meets with a wide range of need depending on the application.
- Contributes to selective co-ordination, and ensures fine characteristic setting
- Inquire for the details of digital relay.

2 Common features

Pre-alarm function (PAL)

The load current exceeds the value of the setting, before the breaker trips, the PAL operates, it contributes electrical continuity and easy maintenance.
The trip indicator (TI) is operated simultaneously with the OCR alarm (AL), when the
breaker trips because of Long time delay, short time delay/Instantaneous and Ground fault breaker trips because of Long time delay, short time delay/Instantaneous and Ground fault indication LED and a relay contact will provide an output signal.
Temperature alarm (TAL)

The TAL is operated by an unusual temperature of the breaker contacts.

Earth leakage protection (ER)

A choice of earth leakage alarm or earth leakage tripping function is available improving
the discrimination and the safety in circuit design.

Meets Many Needs

Overcurrent protection on the neutral pole (NP)
In a 3 -phase 4 -wire circuit such that as provided to a computer, DC power unit or othe ad devices, higher harmonics are liable to be generated which could cause damage as

More secure protection owing to detection of effective value (RMS)

Effective value detection that is most suitable for the protection of electronic devices Effective value detection independently provided for each phase, which is effective fo wave forms is used to cope with the increasing use of electronics devices, including inverters.

option Ground fault protection (GFR)
Either a ground fault trip or alarm function can be selected by a change-over switch. A control supply is not necessary.

Load current indication LEDs

 The lay.relay
option Load current measurement (LM)
The largest phase current can be measured. The ammeter should be a DC voltage type 0-10V.

■ Electronic trip relay features (2/2)

Enhanced Further with a Wide Variety of Functions

Wide-Range High Accuracy Protection Characteristics

The setting range of the instantaneous tripping current has been extended to allow setting of values equivalent to the rated breaking current.
(Max 50 kA)

- A Wide range of long time dela operation time can be set
A method for detecting
values of each phase i
values of each phase inderfective as been adapted independently monitoring method for distorted waveforms to meet with inverters and becoming in creasingly popular.

Curren(\%) \rightarrow

Realization of Advanced Circuit
 Monitoring and User-Friendly Networking

Incorporation of Transmission Function

- Connection to the Mitsubishi Distribution Control Network (B/NET) System is facilitated by incorporating transmission interface

Function	Contents
	Breaker status (ON,OFF,TRIP) Circuit condition (pickup, alarm outputs) (ordinaring)
Measured current value	
Fault information	
Preset characteristic values	
Status of self-diagnosis	

Substantiation of Test Function

- The characteristics of all zones can be confirmed with simulated currents provided by th internal testing circuit.
- Independent testing of each phase is possible with a field tester.

Neutral Pole Protection

- The long time delay tripping characteristics of the neutral pole can be set at 50% or 100% of the main pole
Designation of the short time delay and instantaneous tripping characteristics are also possible.

Substantiation of Self-Diagnosis

- Substantial self-diagnosis features, including monitoring of the switching and breakin operation, monitoring of the temperature of the around contact and the controlled circuit, provide higher reliability for continuous supply distribution.

Improved selective co-ordination

- Selective co-ordination is improved by the zone interlock functions for ground faultearth leakage protection and the ramp characteristics immediately prior to the instantaneou tripping zone

External view and Internal construction

■ Product introduction

Super AE series allows easier customer selection

- Product Specification(SS)

- Specification <IEC 60947-2, BS EN60947-2, VDE0660 Ics/Icu>

Type				SS type (standard model)																						
Type				AE630-SS		AE1000-SS		AE1250-SS		AE1600-SS		AE2000-SS		AE2500-SS		AE3200-SS		$\begin{array}{\|c\|} \hline \text { AE4000-SSC } \\ \hline 4000 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { AE4000-SS } \\ \hline 4000 \\ \hline \end{array}$		AE5000-SS		AE6300-SS			
Frame size (A)				630	30	10		125		160		20		250	00	320	00				500			300		
Rated insulation voltage (VAC)				100	00	10		100		100		100		100	00	100	00	1000	100	00	100			000		
Rated operating voltage			(VAC)	69	90	69		69		69				69		69	90	690	69	0	69			90		
Number of poles (P)				3	4	3	4	3	4	3	4	3	4	3	4	3	4	3	3	4	3	4	3	4		
Rated current (In)		General use (Current rating adjustable)				$\left.\begin{gathered} 500-600-700 \\ -800-900-1000 \end{gathered} \right\rvert\,$		$\begin{gathered} 625-750-875 \\ -1000-1125-1250 \end{gathered}$		$\begin{aligned} & 800-960-1120 \\ & -1280-140-1600 \end{aligned}$				1250-1500-1750 -2000-2250-2500		1600-1920-2240 -2560-2880-3200		3200-360-400	2000-2400-2800		$\begin{aligned} & 2500-3000-3500 \\ & -400-4500-5000 \end{aligned}$		$\left\lvert\, \begin{aligned} & 3150-3780-4410 \\ & -5040-5670-6300 \end{aligned}\right.$			
(A)		Generator protection use (Current rating fixed)		315<In $\operatorname{s} 630$ 200<In ≤ 315		500SIn 1000		625SINs1250		800 1 InS1600		1000<In ≤ 2000 625SIns1000		1250In 2250		1600<In ≤ 320		3200SIn 4000	200<SIn 4000		2500SIN5500		3150Ins6000			
Rated current of neutral pole (A)			(A)	630		1000		1250		1600		2000		2500		3200		-	3200		3200		3200			
Rated breaking capacity Ics/ Icu (RMS kA)	With instantaneous trip		690VAC	50/50		50/50		$50 / 50$		$50 / 50$		50/65 $65 / 65$		50/65		50/65		$50 / 50$	$50 / 50$		50150		50/50			
			600VAC	5050		50/50		$50 / 50$		$50 / 50$				65/65			85/85		85/85							
			500VAC			65		65/65		65/65		$65 / 65$$85 / 85$				65/65	65/65		$\frac{85 / 85}{85 / 85}$	$\frac{85 / 85}{130 / 130}$		130/130		130/130		
			240VAC	$65 / 85$		$65 / 85$		65/85		$65 / 85$				$\begin{array}{\|l} \hline 85 / 85 \\ \hline 85 / 85 \\ \hline \end{array}$				$85 / 85$				130/130		130/130		
	With MCR		690VAC	4214	142	$42 / 42$		$42 / 42$		$42 / 42$$50 / 50$		$50 / 50$		$50 / 50$		$\begin{array}{\|l\|} \hline 85 / 85 \\ \hline 50 / 50 \\ \hline \end{array}$		$\begin{aligned} & \hline 85 / 85 \\ & \hline 50 / 50 \\ & \hline \end{aligned}$		$50,50$		$50 / 50$				
			600VAC	$50 / 50$		$\begin{aligned} & 50 / 50 \\ & \hline 65 / 65 \end{aligned}$		50/50				65/65		65/65		65/65		65/65	85/85		855/85		50/50 85			
			500 VAC	$\begin{aligned} & 65 / 65 \\ & \hline 65 / 65 \end{aligned}$				50150	65/65		65/65		65/65		75/75	$85 / 85$		85/85								
			240VAC			65/65				65/65		$\begin{aligned} & \hline 65 / 65 \\ & \hline 65 / 65 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 65 / 65 \\ \hline 45 / 45 \\ \hline \end{array}$		$65 / 65$$45 / 45$		65/65		$\frac{75 / 75}{45 / 45}$	$85 / 85$$50 / 50$		85/85		85/85	
	Without instantaneous (Note2)		690 VAC	25/25		25/25		25/25		25/25		$\begin{aligned} & 45 / 45 \\ & \hline 45 / 45 \end{aligned}$				$\begin{aligned} & \hline 85 / 85 \\ & \hline 50 / 50 \\ & \hline \end{aligned}$	$50 / 50$									
			500VAC	25/25		25/25		25/25		25/25				45/45						45/45		45/45			65/65	
			690VAC		05	10		10		10				14		14		105	$\frac{65 / 65}{105}$		105					
	With in	ataneous trip	600VAC		05	10		10		10		14		14		14		143	18	87	18			87		
	Winh	antaneous trip	500VAC		43	14		14		14		18		18			87	187	28	86	28			86		
Rated			240VAC		87	18		18		18		18		18				187	28	86	28			86		
capacity			690VAC		8.2	88		88		88		10		10			5	105	10	5	10			05		
Icm		With MCR	600 VAC		05			10		10		14		14			3	143	18	87	18			87		
(Peak kA)			500 VAC		43			14		14				14			3	165	18	87	18			87		
			240VAC		43	14		14		14		14		14				165	18	87	18			87		
	Without	antaneous (Note2)	690 VAC		2.5	52		52		52				94.				94.5	10	5	10			05		
			500 VAC		2.5	52		52		52		94		94.		94		94.5	14	43	14			43		
			1 sec	65	5	6		65		65		6		65			5	75	8	5	85			35		
	(RMS	rent Icw	2 sec	40	0	4		40		60		6		65			5	65	6	5	65			65		
			3 sec	30	0	3		30		50		6		65			5	65		5	65			65		
Maximum	n total brea	g time	(sec)	0.0	04	0.0		0.0		0.0		0.0		0.0				0.04		05	0.0			05		
Closing tim	time		(sec)	0.0	08					0.0				0.0			08	0.08		08	0.0			08		
Number of	operating	cles. (Note 1)	With rated current	500	00	50				50		15		150			00	500		00	50			00		
	operaing	(Without rated durent		000	100		100		100		100		100			000	5000		00	200			000		
			a	340	425	340	425	340	425	340	425	475	605	475	605	475	605	605	-	-	-	-	-	-		
$\|\underline{\underline{s}}\|$	\bigcirc		b	410	410	410	410	410	410	410	410	410	410	410	410	410	410	414	-	-	-	-	-	-		
$\left\|\cdot \frac{6}{-0}\right\|$			c	290	290	290	290	290	290	290	290	290	290	290	290	290	290	290	-	-	-	-	-	-		
			d	38	38	38	38	38	38	38	38	38	38	38	38	38	38	136	-	-	-	-	-	-		
$\mid \underline{\underline{E}}$			a	300	385	300	385	300	385	300	385	435	565	435	565	435	565	565	875	1005	875	1005	875	1005		
$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{o}} \\ & \stackrel{y}{3} \end{aligned}\right.$	\bigcirc		b	430	430	430	430	430	430	430	430	430	430	430	430	430	430	430	480	480	480	480	480	480		
害			c	368	368	368	368	368	368	368	368	368	368	368	368	368	368	368	368	368	368	368	368	368		
	$\xrightarrow{\text { a }}$	咅	d	61	61	61	61	61	61	61	61	61	61	61	61	61	61	151	123	123	123	123	123	123		
		Manual	harging type	40	50	41	51	41	51	42	52	60	72	61	73	63	75	109	-	-	-	-	-	-		
		Motor ch	arging type	43	53	44	54	44	54	45	55	63	75	64	76	66	78	112	-	-	-	-	-	-		
(kg)	Drawout	e Manual	harging type	63	77	64	78	64	78	65	79	92	113	93	114	95	116	145	240	263	240	263	240	263		
	(including c	(e) Motor ch	arging type	66	80	67	81	67	81	68	82	95	116	96	117	98	119	148	244	267	244	267	244	267		
		Cradle only		26	30	26	30	26	30	26	30	35	43	35	43	36	44	75	125	140	125	140	125	140		

Note 2 : The number of operating cycles without rated current also include the number of operating cycles with rated current.
(he bare (without electronic trip relay) main body and the
external relay are combined. Please apply for further detail.

Product Specification(SH)

- Specification <IEC 60947-2, BS EN60947-2, VDE0660 Ics/Icu>

Note 1:The number of operating cycles without rated current also include the number of operating cycles with rated current.
Note 2:The columns for "without instantaneous tripping" are the values when the bare (without electronic trip relay) main body and the external relay are combined. Please apply for further detail.

■ Product Specification(SS)

- Specification <JIS C 8372 (o-co-co duty) /JIS C 8370 (o-co duty)>

Note 1 : The number of operating cycles without read current also include the number of operating cycles with rated current.
Note 2 : The columns for "without instantaneous tripping" are the values when the bare (without electronic trip relay) main body and the external

- Shipping Standard <LR, AB, GL, DNV, BV, NK >

Type			
Type			
Frame size			(A)
Rated insulation voltage			(VAC)
Number of poles			(P)
Rated curren	(In)	General use (Fixed rated current)	
Rated breaking capacity (kA RMS Symmetrical)	LR	With instantaneous trip	690 VAC
			600VAC
			500 VAC
	AB	With instantaneous trip	690VAC
			600VAC
			500 VAC
	GL	With instantaneous trip	690 VAC
Rated making capacity (kA peak value) Breaking duty O-CO-CO			600 VAC
		With instantaneous trip	500 VAC
	DNV		690VAC
			500 VAC
	BV	With instantaneous trip	690VAC
			600VAC
			500 VAC
	NK	With instantaneous trip	600VAC

SS type (standard model)										
AE630-SS	AE1000-SS	AE1250-SS	AE1600-SS	AE2000-SS	AE2500-SS	AE3200-SS	AE4000-SSC	AE4000-SS	AE5000-SS	AE6300-SS
630	1000	1250	1600	2000	2500	3200	4000	4000	5000	6300
1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
3	3	3	3	3	3	3	3	3	3	3
$315<$ In ≤ 630 $200 \leq$ I $\mathrm{N} \leq 315$	500<In 1000	625-In 1250	800<In ≤ 1600	$\begin{aligned} & 1000<\text { In } \leq 2000 \\ & 605<1 N<100 \end{aligned}$	$1250 \leq 1 n \leq 2500$	$1600 \leq 1 \mathrm{n} \leq 3200$	${ }^{3200 \leq 1 N \leq 3800}$	2000 ${ }^{\text {In }} \leq 4000$	$2500 \leq 1 n \leq 5000$	
50/106	50/106	50/106	50/106	50/106	50/106	50/106	-	-	-	-
				65/143	65/143	65/143	-	$87 / 211$	87/211	87/211
65/151	65/151	65/151	65/151	85/196	85/196	85/196	-	133/330	133/330	133/330
50/105	50/105	50/105	50/105	50/105	50/105	50/105	-	-	-	-
-	-	-	-	65/143	65/143	65/143	-	-	-	-
65/143	65/143	65/143	65/143	85/187	85/187	85/187	-	-	-	-
50/106	50/106	50/106	50/106	50/106	50/106	50/106	-	-	-	-
				65/143	65/143	65/143	-	-	-	-
65/151	65/151	65/151	65/151	85/196	85/196	85/196	-	-	-	-
50/106	50/106	50/106	50/106	50/106	50/106	50/106	-	-	-	-
-	-	-	-	65/143	65/143	65/143	-	-	-	-
65/151	65/151	65/151	65/151	85/196	85/196	85/196	-	-	-	-
50/105	50/105	50/105	50/105	50/105	50/105	50/105	-	-	-	-
-	-	-	-	65/143	65/143	65/143	-	-	-	-
65/143	65/143	65/143	65/143	85/187	85/187	85/187	-	-	-	-
50/112	50/112	50/112	50/112	65/143	65/143	65/143	65/143	87/211	87/211	87/211
65/147	65/147	65/147	65/147	85/196	85/196	85/196	85/196	133/330	133/330	133/330

■ Product Specification(SH)

- Specification <JIS C 8372 (o-co-co duty) /JIS C 8370 (o-co duty)>

Type				SH type (High breaking model)						
Type				AE630-SH	AE1000-SH	AE1250-SH	AE1600-SH	AE2000-SH	AE2500-SH	AE3200-SH
Frame size (A)				630	1000	1250	1600	2000	2500	3200
Rated insulation voltage			(VAC)	600	600	600	600	600	600	600
Rated operating voltage			(VAC)	550	550	550	550	550	550	550
Number of poles (P)				3 3 4	3 3 4	3 3 4	3 3 4	3 3 4	3 3 4	3 3 4
Rated current (In)		General use(Current rating adjustable)		$\begin{gathered} 315-378-441 \\ -504-567-630 \end{gathered}$	$\begin{array}{\|c\|} \hline 500-600-700 \\ -800-900-1000 \end{array}$	$\left\|\begin{array}{c} 625-750-875 \\ -1000-1125-1250 \end{array}\right\|$	$\begin{aligned} & 800-960-1120 \\ & -1280-1440-1600 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 1000-1200-1400 \\ -1600-1800-2000 \end{array}$	1250-1500-1750 -2000-2250-2500	$\begin{array}{r} 1600-1920-2240 \\ -2560-2880-3200 \end{array}$
(A)		Generator protection use (Current rating fixed)		315<In 6630	500<In 1000	625SIn 1250	$800 \leq 1 \mathrm{n} \leq 1600$	1000 1 In 2000	$1250 \leq 1 \mathrm{l} \leq 2500$	1600 1 In 3200
Rated current of neutral pole (A)				630	1000	1250	1600	2000	2500	3200
Rated breaking capacity (kA RMS symmetrical)	JIS C8372 0.c0.c0	With instantaneous trip	550VAC	85/195.5	85/195.5	85/195.5	85/195.5	85/195.5	85/195.5	85/195.5
			460VAC	130/299	130/299	130/299	130/299	130/299	130/299	130/299
		With MCR	550 VAC	-	-	-	-	-	-	-
			460 VAC	-	-	-	-	-	-	-
		Without instantaneous (Note2)	550 VAC	-	-	-	-	-	-	-
Rated making capacity (kA peak value) Breaking duty O-CO-CO	JIS C8370 0.CO	With instantaneoustrip	550 VAC	85/195.5	85/195.5	85/195.5	85/195.5	85/195.5	85/195.5	85/195.5
			460VAC	130/299	130/299	130/299	130/299	130/299	130/299	130/299
			220VAC	130/299	130/299	130/299	130/299	130/299	130/299	130/299
		With MCR	550 VAC	-	-	-	-	-	-	-
			460VAC	-	-	-	-	-	-	-
			220VAC	-	-	-	-	-	-	-
Rated short time current (RMS kA)			1 sec	-	-	-	-	-	-	-
			2 sec	-	-	-	-	-	-	-
			3 sec	-	-	-	-	-	-	-
Maximum total breaking time			(sec)	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Closing time			(sec)	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Number of operating cycles. (Note 1)			With rated current	3000	3000	3000	2000	1500	1500	1000
			Without rated current	10000	10000	10000	10000	10000	10000	10000

Note 1 : The number of operating cycles without read current also include the number of operating cycles with rated current.
Note 2 : The columns for "without instantaneous tripping" are the values when the bare (without electronic trip relay) main body and the external
Nolay are combined. Please apply for further detail.

- Shipping Standard <LR, AB, GL, DNV, BV, NK >* DNv:Under application

Type				SH type (High breaking model)						
Type				AE630-SH	AE1000-SH	AE1250-SH	AE1600-SH	AE2000-SH	AE2500-SH	AE3200-SH
Frame size (A)				630	1000	1250	1600	2000	2500	3200
Rated insulation voltage (VAC)				1000	1000	1000	1000	1000	1000	1000
Number of poles (P)				3	3	3	3	3	3	3
Rated current (IN)		General use(Fixed rated current)		$315 \leq 1 n \leq 630$	500<In 1000	625SIN 1250	$800 \leq 1 n \leq 1600$	1000 ${ }^{\text {In }}$ <2000	$1250 \leq$ In ≤ 2500	$1600 \leq I^{n} \leq 3200$
Rated breaking capacity (kA RMS Symmetrical)	LR	With instantaneous trip	690VAC	68/173	68/173	68/173	68/173	68/173	68/173	68/173
			600VAC	$87 / 211$	$87 / 211$	$87 / 211$	$87 / 211$	87/211	$87 / 211$	87/211
			500VAC	133/330	133/330	133/330	133/330	133/330	133/330	133/330
	AB	With instantaneous trip	690 VAC	-	-	-	-	-	-	-
			600 VAC	-	-	-	-	-	-	-
			500VAC	-	-	-	-	-	-	-
	GL	With instantaneous trip	690VAC	-	-	-	-	-	-	-
			600VAC	-	-	-	-	-	-	-
Rated making capacity (kA peak value) Breaking duty O-CO-CO			500VAC	-	-	-	-	-	-	-
	DNV	With instantaneous trip	600 VAC	-	-	-	-	-	-	-
			500VAC	-	-	-	-	-	-	-
	BV	With instantaneous trip	690VAC	-	-	-	-	-	-	-
			600VAC	-	-	-	-	-	-	-
			500VAC	-	-	-	-	-	-	-
	NK	With instantaneous trip	600VAC	-	-	-	-	-	-	-
			500VAC	130/317	130/317	130/317	130/317	130/317	130/317	130/317

Connecting methods

Connection arrangements

The following connecting methods are available for the AE type air circuit breaker.

MountingConnecting methodmethod	Horizontal connection (Standard)	Vertical connection (VT)	Front connection (FT)	Vertical terminal adapter (VTA)	Front terminal adapter (FTA)
Fixed type (FIX)					
Draw-out type (DR)					

-Connecting Methods

Connecting method		AE630-SS	AE1000-SS	AE1250-SS	AE1600-SS	AE2000-SS	AE2500-SS	AE3200-SS	AE4000-SSC	AE4000-SS	AE5000-SS	AE6300-SS
Fixed type(FIX)	Horizontal terminal (Standard)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-
	Vertical terminal	-	-	-	-	-	-	-	\bigcirc	-	-	-
Options	(VTA)	\bigcirc	-	-	-	-						
	(FIX-FTA)	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-
Draw-out type (DR)	Horizontal terminal (Standard)	-	-	-	-	-	-	-	-	-	-	-
	(DR-VT) ${ }_{\text {(Note 1) }}$	\bigcirc	-	-	-	-						
	(DR-FT)	\bigcirc	-	-	-	-						
Options	(VTA)	\bigcirc	-	-	-	-						
	(DR-FTA)	\bigcirc	-	-	-	-						

Connecting method			AE630-SH	AE1000-SH	AE1250-SH	AE1600-SH	AE2000-SH	AE2500-SH	AE3200-SH
Fixed type (FIX) Options		Horizontal terminal (Standard)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-
		(VTA)	\bigcirc						
		(FIX-FTA)	\bigcirc						
Draw-out type (DR)		Horizontal terminal (Standard)	\bigcirc	-	-	-	-	-	-
		(DR-VT)	\bigcirc						
		(DR-FT)	\bigcirc						
Options		(VTA)	\bigcirc						
		(DR-FTA)	\bigcirc						

Note1: The terminal for AE4000-SSC, AE4000-SS~AE6300-SS shall be vertical terminal.
(Remarks) The white circle "O" indicates that the product can be manufactured, while the blue " \bigcirc " indicates the standard connecting method.

Manual charging

The spring is charged by the manual charging handle. The breaker is closed when the ON button is pressed, and opened when the OFF button is pressed.

- When the closing spring charging is completed, the charging indicator displays CHARGED.
- The indicator displays ON or OFF state of the main contacts.
- The breaker cannot be closed while the OFF button is being pressed. (Safety feature)

OFF lock is available by padlock (See P9, P24) as standard.

Motor charging device (MD)

The closing spring is charged by an electric motor. When the breaker is closed, the spring is charged automatically (ON-charge method.) The closing coil (CC) is required to remotely close, and the shunt trip device is required to remotely open the breaker.

- Manual charging is also available.
- Pumping prevention is assured both electrically and mechanically.
- As the charging completion contact is separate from the electrical charging circuit, its function in the control scheme can be arranged as desired.

Apply for further details of 24V DC and 48V DC.

- Motor charging rating

Rated voltage	Applicable voltage range (V)	Applied voltage (V)	Inrush current (peak value)(A)	Steady current (A)	Charging time (sec.)
DC24V	20.4~26.4	24	22	6	$\leqq 5$
DC48V	36~52.8	48	14	3	$\leqq 5$
$\begin{gathered} \text { AC-DC } \\ 100 \sim 125 \mathrm{~V} \end{gathered}$	85~137.5	100	10(10)	3(4)	≤ 5
		125	12(12)	3(4)	$\leqq 5$
$\begin{gathered} \text { AC-DC } \\ 200 \sim 250 \mathrm{~V} \end{gathered}$	$170 \sim 275$	200	5(7)	1(2)	$\leqq 5$
		250	6(8)	1(2)	≤ 5

(): AE4000-SS~AE6300-SS
DC24, DC48V is not available for AE4000-SS~AE6300-SS

- OFF charging method

A OFF charging method is also available. The closing spring is charged automatically when the breaker is opened. This is available only by externally connecting in series b contact (AXb) of the auxiliary switch to the motor charging circuit.
In case of DC power supply, please use high capacity auxiliary switch (HAX).

Accessories (for Breaker unit 1/2)

Closing coil (CC)

The closing coil is a device to close the breaker by remote control.

- An interlock to prevent pumping is provided electrically.

$\begin{array}{\|c\|} \hline \text { Rated voltage } \\ \text { Applicadle volage range) } \end{array}$	erating voltage \cdot Operating inrush current (VA)				$\underset{\text { time }}{\substack{\text { Closing }}}$
		AC		DC	
$\begin{aligned} & \hline \mathrm{DC} 24-48 \mathrm{~V} \\ & (18 \sim 52.8) \\ & \hline \end{aligned}$		-	DC24V	$3.5 \mathrm{~A}(100 \mathrm{~W})$	0.08 sec or less
		-	DC48V	7.0A (200W)	
$\begin{array}{\|c\|} \hline \mathrm{AC} \cdot \mathrm{DC} \text { common } \\ 100-200)^{1} \\ (75-275) \\ \hline \end{array}$	AC100V	0.5A (100VA)	DC100V	0.6A (100W)	
	AC250V	1.0 A (150VA)	DC250V	1.3A (200W)	

- Closing time is from the initial energization of the closing coil to the completion of the
closing of the main contacts
- Because of pumping prevention is not performed, do not use AXb contact for a cut-off
switch.

Shunt trip device (SHT)

This is the switch used to open the breaker by remote control. A cut-off switch is included

Rated voltage (Applicable voltage range)	Operating voltage • Operating inrush current (VA)				Operatingtime
		AC		DC	
		-	DC24V	3.5A (100W)	$\begin{gathered} 0.04 \mathrm{sec} . \\ \text { or less } \end{gathered}$
		-	DC48V	7.0A (200W)	
	AC100V	0.6A (100VA)	DC100V	0.8A (100W)	
	AC250V	1.7A (150VA)	DC250V	2.0A (250W)	
	AC460V	0.6A (200VA)		-	

Motor charging device (MD)
The closing spring is charged electrically, and the breaker will be ready to
be closed.

- When specifying the motor charging device, be sure to order the closing
\bullet Refer to page 18 for details.

Under voltage trip device (UVT)
This device is used to trip the breaker if the supply voltage is reduced below its nominal This device is used and consists of UVT oil and UVT covtror Two types are avaiabs: the instantaneous type which trips the breaker instantly, and a time delay type which trips the instantaneous type which trips the breaker instantly, and a titme delay type which trips the
breaker after a delay of 0.5 or 3 seconds from when the supply voltage has reduced below its nominal value. The UVT controller can be mounted on the lefthand side of the breake looking from the front.

(Note 1) If dual rated voltages are used, a lower value is applied.
(Note 1) If dual rated voltages are used, a lower value is applied. connect a normally closed switch, rated 1 mA at 100 VDC across them. (Note 3) The operating time is a guarantee value when it drops from 85% or

- The following delay should be allowed between applying the voltage to the UVT, and closing the UVT-SSB*: 1.5 sec., UVT-05SSB*: 1.5 sec., UVT-30SSB*: 3 sec,
\bullet UVT circuit diagram © UVT controller

Auxiliary switch

(AX-standard, HAX-high capacity type)

Type			AX(standard)		HAX (high capacity type)		
			Resistance load	Inductive load	Resistance load	Inductive load	
	A C	460	5	2	5	2.5	
		250	10	10	10	10	
		125	10	10	10	10	
	D C	250	0.3	0.3	3	$\stackrel{1.5}{6}$	
		125	0.6	0.6	10		
		30 V	10	6	10	10	
Maximum contacts			5 a 5 b		5 a 5 b		
Change-over sequence			Breaker state	a-contact ((NO)		-contact (NC)	
			ON	O	OFF		
			OFF	OFF			

-The a and b contacts may turn simultaneously to ON instantaneously at the time of changing the contact;
Pay attention to the contact state when designing circuits.

- The chattering time at the time of contact ON-OFF is below 0.025 sec .
- For special environment specification, the contact capacity gets deteriorated Apply for further detail.

Accessories (for Breaker unit 2/2)

Push button cover

The cover is to prevent careless manual operation (ON, OFF) of the push buttons.
BC-L can be locked by a padlock (The padlock being supplied by the customer.)
For the size of the a suitable padlock, refer to Page 24.

Push button cover

The open/close operations of the breaker are shown on a 5 digit counter.

The breaker is locked OFF with the cylinder lock.

- Since it is an interlock which only allows the key to be removed when the breaker is locked off, it can be used for interlocking two or more breakers.

The panel door cannot be opened unless the breaker is open.

- A wire type mechanical interlock is used to allow flexibility in positioning breakers in the switchboard.
- The parts of the Door panel should be supplied by customer.

The transparent terminal cover prevents from careless touching to the live control terminals.
Protection degree IP20.

option

The door frame improves the appearance, after cutting out the panel door to install the breaker.

Dust cover prevents the dust or water entering into the panel board from the breaker panel cut.
Protection degree IP 54.

Orion Interphase Barrier (BA)

The interphase insulation of the circuit breaker has been intensified to prevent the shortcircuit due to conductive matters or dust. Easily detachable, in design, the barrier is applicable to fixed type, draw-out type, horizontal terminal or vertical terminal. (For further detail, see the "Table of Mountable Barriers" given below.

-Table of Mountable Barriers

Fixed type	Connecting method	AE630-SS~ AE1600-SS	AE2000-SS~ AE3200-SS	AE-SH Type
	Horizontal terminal (standerd)	\bigcirc	\bigcirc	-
	Vertical terminal adapter	-	-	-
	Front terminal adapter	-	-	-
Draw-out type	Horizontal terminal (standerd)	-	-	-
	Vertical terminal	-	-	-
	Front terminal	-	-	-
	Vertical terminal adapter	-	-	-
	Front terminal adapter	-	-	-

Not available for AE4000-SSC, AE4000-SS~AE6300-SS

Mechanical interlock (MI)

The mechanical interlock is a secure interlock prohibiting the parallel closing of two or three breakers.

- Any combination between AE630-SS~AE3200-SH and AE4000-SSC is possible. Please apply for further details of AE4000~6300-SS.
- It can be simply installed on either fixed or drawout type breakers.
- With the drawout type, the interlock operates at the connecting point and can be released at other positions, providing secure maintenance and inspections of the breaker.
- There are restrictions on ordering MI and DI together, please apply for further details.
- It is impossible to secure interlock among 3 pcs of AE4000-SS~AE6300-SS.

The following interlocks are available.

Change over of two power supplies

Change over of two supply systems
Up to any two breakers can be closed. (Please apply for further details)

- Breaker arrangement (630AF ~ 3200AF)

Condenser trip device (COT)

Even if the power supply fails, the breaker can be electrically opened by remote operation within a definite time. This device is combined with the shunt trip device (SHT).

Note 1: The rated charging voltage is the voltage stored during capacitor saturation. It is continuously supplied by the rectified voltage of the rated $A C$ input voltage.
Note 2: The charging time starts when the capacitor begins to supply power at 85% of the rated $A C$ input voltage and continues until the capacitor charging voltage reaches 60% of rating.
Note 3: The time period in which the shunt trip device can perform its one operation starts from when the capacitor is charge to 100% the supply voltage is removed.

- Outline dimensions (mm)

Type	KF-100	KF-200
Rated input voltage	$100 / 110 \mathrm{VAC}$	$200 / 220 \mathrm{VAC}$
Rated frequency	$50 \sim 60 \mathrm{~Hz}$	$50 \sim 60 \mathrm{~Hz}$
Rated charging voltage (Note1)	$140 / 155 \mathrm{~V}$	$280 / 310 \mathrm{~V}$
Condenser capacity	$660 \mu \mathrm{~F}$	$150 \mu \mathrm{~F}$
Voltage range	$60 \sim 125 \%$	$60 \sim 125 \%$
Power supply capacity	1 VA	1 VA
Charging time (Note 2)	0.5 sec max.	0.5 sec max.
Trip limit time (Note 3)	15 minutes min.	5 minutes min.
Paint colour	Black (N1.5)	Black (N1.5)
Withstand voltage (1 minute)	2000 VAC	2000 VAC
Applicable shunt trip voltage	$100 \sim 250 \mathrm{VAC} \cdot D C$	$100 \sim 250 \mathrm{VAC} \cdot \mathrm{DC}$

Accessories (for Drawout frame)

The switch is used to indicate the drawout positions (CONNECTED, TEST, DISCONNECTED).

- Operating sequence and contact rating

	Voltage (V)		Resistive load	Inductive load
	AC	460	5	2.5
		250	10	10
		125		
	DC	250	3	1.5
		125	10	6
		30	10	10
Num	hat m	intall	Total 4c max.	

Shorting b-contact (SBC)

When moving the breaker from the connected to the test positions, use this contact to short circuit auxiliary switch ($\mathrm{A} \times \mathrm{b}$) thus maintaining the correct sequence of operation of the external control circuit.
When ordered, the same number of shorting b-contacts as auxiliary switches (Axb) will be provided.

Lifting hooks (HP)

This is used to remove the drawout type breaker from the cradle.
The option is not necessary when the special lifter (bucket type) for AE-SS-SH is used.
The fixed type breaker is equipped with HP as standard.

option
 Safety shutters (SST)

The safety shutters cover the conductors (cradle side) and prevent contact with them when the breaker is drawn out.

- When checking the main circuit, supply and load sides of the shutters can be kept OPEN independently. (they are released automatically when the breaker is pushed in.)

This kit is used to lock the safety shutters using 2 padlocks (the padlocks to be customer's supply). The safety shutters close when the breakers drawn out to prevent accidental contact with the main contacts.

This option prevents any other circuit breakers except those specified from being inserted into the cradle, 5 settings are available.
(Note) It is not available for AE4000-SS~AE6300-SS.

With the breaker taken out of its cradle, this device will enable the breaker to be electrically opened and closed, and the operating sequence to be checked.
Note 1: Remove the breaker out of its cradle before using this device.

Lifting truck for transferring AE-SS, AE-SH breakers. Apply for further details.

Standard equipment

Drawout interlock

A safety device prohibits push-in and drawout when the breaker is ON. The drawout handle cannot be inserted unless the OFF button is pressed.

Position lock

This device is for locking the drawout mechanism at the TEST position this then indicates the "TEST position". The lock can be used during either the drawing out or pushing in operation.
The lock is released when the lock plate is pushed in, and the next operation becomes possible.
Padlocking is possible at the CONNECTED, TEST, and DISCONNECTED positions. Use this lock to prevent unauthorized changing of positions.

The padlock should be supplied by customer.

Operating position of drawout type>

- The earthling points are located on both sides of the cradle, and they make contact between the breaker and the cradle at CONNECTED, TEST, and DISCONNECTED positions.

Electronic trip relay specifications table

Type	Operating characteristics			Accessory (possible combinations)			Referred page
	Standard LTTD:S̄TDi:INST:			OCR alarm $(\mathrm{AL}) \mathrm{A}$	Load current measuremen $\text { (LM) } \mathbf{C}$	Temperature alarm $(\mathrm{TAL}) \mathrm{T}$	
General use C type (Note 6$)$	C	-	-	\bigcirc	-	-	29,30
General use S type	S	S-C	-	\bigcirc	-	-	31,32
	ST TI	$\begin{aligned} & \text { ST-C } \\ & \mathrm{TI}^{\mathrm{T}} \\ & \hline \end{aligned}$	ST-N	\bigcirc	-	-	
	$\begin{aligned} & \text { SPT } \\ & \begin{array}{l} \mathrm{TI} \mathrm{PAL} \end{array} \end{aligned}$	$\begin{aligned} & \text { SPT-C } \\ & \text { TI PAL } \end{aligned}$	-	\bigcirc	\bigcirc	\bigcirc	
	$\begin{aligned} & \hline \text { SPGT } \\ & \hline \mathrm{TI} \text { PAL GFR } \end{aligned}$	$\begin{aligned} & \hline \text { SPGT-C } \\ & \hline \mathrm{TI} \text { PAL GFR } \\ & \hline \end{aligned}$	-	\bigcirc	\bigcirc	\bigcirc	
	$\begin{aligned} & \hline \text { SPET } \\ & \hline \mathrm{TI} \text { PAL ER } \end{aligned}$	$\begin{aligned} & \hline \text { SPET-C } \\ & \mathrm{TI} \text { PAL ER } \end{aligned}$	-	\bigcirc	\bigcirc	\bigcirc	
General use special LTD SL type	SL	SL-C	-	\bigcirc	-	-	31,32
	$\begin{gathered} \hline \text { SLT } \\ \mathrm{TI} \\ \hline \end{gathered}$	$\begin{aligned} & \text { SLT-C } \\ & \mathrm{TI} \end{aligned}$	-	\bigcirc	\bigcirc	\bigcirc	
	$\begin{aligned} & \hline \text { SLPT } \\ & \begin{array}{ll} \mathrm{TI} & \mathrm{PAL} \\ \hline \end{array} \end{aligned}$	$\begin{aligned} & \text { SLPT-C } \\ & \begin{array}{\|l\|} \hline \text { TI PAL } \\ \hline \end{array} \end{aligned}$	-	\bigcirc	\bigcirc	\bigcirc	
	$\begin{aligned} & \hline \text { SLPGT } \\ & \begin{array}{\|l\|l\|l\|} \hline \text { TI } & \text { PAL } & \text { GFR } \\ \hline \end{array} \end{aligned}$	$\begin{aligned} & \hline \text { SLPGT-C } \\ & \hline \text { TI } \\ & \hline \end{aligned}$	-	\bigcirc	\bigcirc	\bigcirc	
	$\begin{aligned} & \text { SLPET } \\ & \begin{array}{l} \mathrm{TI} \text { PAL } \end{array} \text { ER } \end{aligned}$	$\begin{aligned} & \hline \text { SLPET-C } \\ & \hline \mathrm{TI} \text { PAL ER } \\ & \hline \end{aligned}$	-	\bigcirc	\bigcirc	\bigcirc	
Generater protection use	M	-	-	\bigcirc	-	-	33,34
	$\begin{gathered} \hline \mathrm{MT} \\ \mathrm{TI} \\ \hline \end{gathered}$	-	-	\bigcirc	-	-	
M type	$\begin{aligned} & \hline \text { MPT } \\ & \hline \mathrm{TI} \text { PAL } \end{aligned}$	-	-	\bigcirc	-	\bigcirc	
	$\begin{aligned} & \text { MPGT } \\ & \begin{array}{l} \mathrm{TI}\|\mathrm{PAL}\| \mathrm{GFR} \\ \hline \end{array} \end{aligned}$	-	-	\bigcirc	-	\bigcirc	

Classification of types

Standard function

1) Load current indicator..........The load state is indicated by the color of the LED
2) Test terminal.....................For characteristics check. M type relay can be
3) STD lock buttonConvenient checking of the INST. operation
(Note1) C MCR function is not available for AE-SH.
(Note2) $\quad \mathrm{N}$ Neutral protection for 4 pole breaker
(Note3) GFR Not available for AE-SS series with maximum rated current (In max) coming to 315A or 500A, nor AE630-S
(Note4) ER The earth leakage alarm facility is provided by using a electronic trip relay with earth leakage protection (E characteristics) and a external ZCT (see page 37 and 38.)
Should the breaker be required to trip on earth leakage, the above should be used with a SHT.
(Note5)
(Note6) C type relay is not available for AE4000-SSC and AE4000-SS~AE6300-SS

Electronic trip relay(Characteristics setting table)

		General use				
		C type		S type	SL type	
Rated current Max. (In max)		Refer to table 1 (In mAX=CT rating)				
Rated	urrent(In)	$\begin{aligned} & 0.5-0.6-0.7-0.8-0.9-1.0 \times \text { In max } \\ & 0.8-0.9-1.0 \times \text { In max (AE4000-SSC) } \end{aligned}$				
Uninterrupted current(IU)		-		0.8~1.0×In		Continuously
	Current	1.15XIN $\pm 10 \%$ (Note 1)	FIX	$1.15 \times \mathrm{I}$ ¢ $\pm 10 \%$ (Note 1)		FIX
	Time (TL)	$\begin{aligned} & 150 \mathrm{sec} . \quad \pm 20 \% \\ & \text { (at } \operatorname{In} \times 2 \text {) } \end{aligned}$	FIX	50-100-150 sec. $\pm 20 \%$ steps (at IUX2)	$\begin{aligned} & 10-15-20-25-30 \mathrm{sec} \text {. } \\ & \text { (at Iu×5) } \end{aligned}$	steps
STD	Current (Is)	$2-3-4-6-8-10 \times \mathrm{In} \pm 15 \%$				steps
	Time (Ts)	$0-0.1-0.2-0.3-0.4-0.5 \mathrm{sec} . \pm 20 \%$ (at $1.5 \times$ Is) (note) Operating time is less than 0.05 sec when " 0 " setting.				
INST	Current (${ }^{\text {II }}$)	4-6-8-10-12-16XIn	steps	$4-6-8-10-12-16$ XIn $\pm 15 \%$ $4-6-8-10-12$ XIn $\pm 15 \%$ (AE5000-SS) $4-6-8-10$ XIn $\pm 15 \%$ (AE6300-SS)		steps
PAL (self-hold type)	Current (IP)	-		0.7-0.8-0.9-1.0-OVERXIU $\pm 0 \%$		steps
	Time (Tp)	-		0.5×TL $\pm 20 \%$		
GFR	Current (IG)			$\begin{aligned} & 0.1-0.2-0.3-0.5 \text { XIn max } \quad \pm 20 \% \\ & 0.2-0.3-0.5 \times \text { In max } \pm 20 \% \text { (AE4000-SSC, AE4000-SS~AE6300-SS) } \end{aligned}$		steps
	Time (TG)			0.3-0.8-1.5-3 sec. $\pm 20 \%$ (at IGX1.5)		steps
ER	Current (IE)			1-2-3-5A $\pm 20 \%$		steps
	Time (TE_{E})	\longrightarrow		0.3-0.8-1.5-3 sec. $\pm 20 \%$ (at lEX1.5)		steps

-Unless specified when ordering the electronic relay will be set to in blue.
Note 1: 105\% Non trip, 125\% Pick up

C type setting dial operation schematic

Rated current MAX.
(In max) ——Rated current
(In)

- Instantaneous current (II)
Load current indicator

	Short-time-delay current (Is)
	Long-time-delay current (IL)

S, SL type setting dial operation schematic

		Generator protection use	
		M type	
Rated current Max. (In max)		Refer to table 1 (In max = CT rating)	
Rated current (ls)		$0.5 \sim 1.0 \times$ In max $0.8 \sim 1.0 \times$ In max (AE4000-SSC)	FIX
LTD	Current (l)	1-1.05-1.1-1.15-1.2XIN $\pm 5 \%$	Steps
	Time (T)	15-20-25-30-40-60sec. $\pm 20 \%$ (at 1.2XIL)	Steps
STD	Current (Is)	$2-2.5-3-3.5-4-4.5 \times 1 \mathrm{l} \pm 15 \%$	Steps
	Time (Ts)	$0-0.1-0.2-0.3-0.4-0.5 \mathrm{sec} . \pm 20 \%$ (at 1.5 Xls)	Steps
INST	Current (l)	$\begin{array}{ll} 4-6-8-10-12-16 \times I n \pm 15 \% \\ 4-6-8-10-12 & \text { XIN } \pm 15 \% \\ 4-6-8-10 & \text { XIN } \pm 15 \% \text { (AE5000-SS) } \\ \text { (AE6300-SS) } \end{array}$	Steps
PAL (auto reset type)	Current ($\mathrm{IP}^{\text {) }}$	0.84-0.88-0.92-0.96-1.0XIL $\pm 5 \%$	Steps
	Time (Tp)	$0.5 \times \mathrm{TL} \pm 20 \%$	
GFR	Current ($\mathrm{lg}^{\text {a }}$	$\begin{aligned} & 0.1-0.2-0.3-0.5 \times \ln \max \pm 20 \% \\ & 0.2-0.3-0.5 \times \ln \max \pm 20 \% \text { (AE4000-SSC, AE4000-SS ~ AE6300-SS }) \end{aligned}$	Steps
	Time ($\mathrm{TG}_{\text {) }}$	0.3-0.8-1.5-3 sec. $\pm 20 \%$	Steps

M type setting dial operation schematic
(Factory set) $\downarrow \quad-$ Instantaneous current (II)
Rated current MAX-- Rated current (IN) \square Short-ime-delay current (Is)
(In max) Ground fault current (IG) L- Long-time-delay current (IL) \quad _ Pre-alarm current (IP)
"Long-time-delay" time T "Long-time-delay" time fine adjustment (TL) $\times(0.8$ to 1.2)
Pre-alarm-time $\mathrm{TP}_{\mathrm{P}}=\frac{\mathrm{TL}}{2}$

Table 1 CT ratings (Rated current MAX.)

AE630-SS	AE1000-SS	AE1250-SS	AE1600-SS	AE2000-SS	AE2500-SS	AE3200-SS	AE4000-SSC	AE4000-SS	AE5000-SS	AE6300-SS
$\left.\begin{array}{l}630 \\ 500 \\ 315\end{array}\right\}$ Low rating	1000	1250	1600	$\left.\begin{array}{l}2000 \\ 1600 \\ 1250\end{array}\right\}$ rating						

AE630-SH	AE1000-SH	AE1250-SH	AE1600-SH	AE2000-SH	AE2500-SH	AE3200-SH
630	1000	1250	1600	2000	2500	3200

Electronic trip relay (General use C type)

Note: AE4000-SSC, AE4000-SS to AE6300-SS are not available
OCR Alarm Contact (AL)
B Load Current
Indicates the percentage
current (IN)
60-70-80-90-100-O
Display method:
LED colour
60 to $80 \%=$ Gr
$\square 60$ to $80 \%=$ Green
$\square 90$ to $100 \%=Y$ ellow
OOVER=Red
The LEDS goes out when the breaker
trips.

Overload Protection

I Rated Current (In)
Setting Dial
Rated current MAX. (IN MAX.) \times Seting (A)
$0.5-0.6-0.7-0.8-0.9-1.0$ Changing this setting changes the following values proportionally: Short-time-delay current (Is
Instantaneous current (II)

1. The actual tripping range is $\ln \times 1.05-1.25$
2. The load current is displayed as a percentage of the rated current.
```
Long-Time-Delay (TL)
150 sec. fixed
This value specifies the operating time
when the current flowing is the rated
current set value \(\times 2\).
```

This overview lists the maximum possible
unctionality of the units.
he following functions are included as
. Displays
Load current indicator
. Protective functions
\square Overload protection (long-time-delay) Short-circuit protection (short-time-delay) 3. Peripherals

Short-time-delay operation inhibit button Test terminal

N TEST Terminal Test functions

1. Tripping characteristics
\square Long-time-delay (L)
\square Shot-time-delay (S)
A field test devic
2. An alarm signal is output to the contact
when the breaker is tripped by one of the following causes:
\square Long-time-delay (L)
\square Short-time-dela
3. An external self-hold circuit is required, as the alarm signal pulse has a duration of only 0.03 sec

Short-Circuit Protection
Short-Time-Delay
0 STD P.U. Current (Is) Setting Dial

$$
\text { Rated current (IN) } \times \text { Setting (A) }
$$

$$
2-3-4-6-8-10
$$

$$
\begin{aligned}
& \text { Current threshold value setting for short- } \\
& \text { time-delay tripping. }
\end{aligned}
$$

time-delay tripping.

P STD Time(Ts)
Setting Dial
Time-delay setting (sec.)
Time-delay seteing (se

1. The setting value is the operating time when the current flowing is the short-
time-delay current setting (Is) $\times 1.5$.
time-delay current setting (Is) $\times 1.5$.
will trip in 0.05 seconds.
Q STD Lock Button
When measuring the instantaneous tripping current, press the short-time
delay operation inhibit button (STD LOCK) in order to disable the short-timedelay tripping function.
Instantaneous
R INST. P.U. Current (II)
Setting Dial
Rated current (IN) \times Setting (A)
Sets the threshold current value for instantaneous tripping.

Unless otherwise specified in your order the electronic trip relays will be delivered set to the values shown in blue letter.

Electronic trip relay (General use S, SL types)

A Trip Indicator (TI)
Displays:
LShort-time-delay (S)/Instantaneous (I) \square Ground fault (G) or Earth leakage (E) Display method:
ooth an LED display (red) and a relay
output are provided. Contact rating (A)
. A control power supply is required. **
2. The LED will go out when the control
power supply is switched off or when the
reset button is pressed.

Ground Fult Protection (GFR)
G GFR P.U. Current (IG)
Rated current MAX. (In max.) \times Setting (A)
$0.1-0.2-0.3-0.5$ $0.1-0.2-0.3-0.5$

1. This function is
This function is not available for rated
current MAX. values (IN MAX.) $315 \mathrm{~A}, 500 \mathrm{~A}$ cund AE630-SH.

H $\underset{\text { Setting Dial }}{\text { GFR Time }}$

GFR time setting (sec.) $0.3-0.8-1.5-3$
The setting specifies the operating time
when the current flowing is the ground fault current value setting $\times 1.5$
(see p. 42 for futher details)
Earth Leakage Protection (ER)
ER P.U. Current (IE) Setting Dial
Current setting (A) $1-2-3-5$ Current setting (A) 1-2-3-5

1. A control power supply is requi 1. A control power supply is required.
2. Both external ZCT and SHT are required
(see p. 41 for further details)

ER Time (TE) Setting Dial
ER time setting (sec.) $0.3-0.8-1.5-3$ The setting representst the operariting time
when the current tlowing is the earth leakage when the current tlowing is the earth leakage
current value setting $\times 1.5$. The earth leakage protection facility is not illustrated
because it is only possible to have either because it is only possible to have e
earth leakage or ground fault protection.
This overview lists the maximum possible functionality of the units
he foll equipment. 1. Displays
\square Trip indicator (TI)
\square Load current indicato
\square Display reset button
2. Protective functions
\square Overload protection (long-time-delay) \square Short-circuit protection (short-time-delay) \square Short-circuit protection (instantaneous) 3. Peripherals

Shor-time-delay operation inhibit button
Test terminal

B Load Current
indicates the percentage of uninterrupted 60-70-80-90-100-OVER Display method:
LED colour
LED colour
$\square 60$ to $80 \%=$ Gree

- 90 to to $100 \%=$ Green
\square OVER=Red
The LEDs goes out when the breaker trips.
D Reset

1. Pressing this button resets the displays.
2. The button resets both the LEDs and the
relay output of signals:
\square Trip indicator
\square Pre-alarm

C Pre-Alarm Display (PAL) isplay method: Both an LED display Contact rating (A)*

1. The "PAL" LED lights up when the preset value is exceeded (the relay is not activated when this happens).
The relay output is activated
"PAL OUT" LED lights up.
2. A control power supply is required.
3. A control power supply is required.
4. The LED goes out when the control power supply is turned off or when the reset buttons pressed.
than the pre-alarm current, the "PALOUT" LED will not go out.

\square Rated Current (IN)

 Setting DialRated current MAX. (In max.) \times Setting (A) $0.5-0.6-0.7-0.8-0.9-1.0$ Changing this setting changes the following values proportionally:
\square Uninterrupted current (IU)
\square Instantaneous current (II)
\square Pre-alarm (IP)
J Pre-Alarm Current (Ip) Setting Dial Rated current (IN) X setting (A) Current setting for pre-alarm activation If the setting value is exceeded the "PAL"

Overload Protection

K Uninterrupted Current (IU) Setting Dial
Rated current (IN) \times Setting (A) 0.8~1.0 . Used for setting the continuous uninterrupted current value.
2. The actual tripping range is IU $\times 1.05-1.25$.
3. The The load current is displayed as a percent-
age of the uninterrupted current and thus changes proportionally when the uninterrupted current setting is changed.
4. The pre-alarm also changes proportionally.
5. Neutral pole protection (NP) is possible to either ST- N relay.
(see p. 42 for further details).

L LTD Time (TL)
Setting Dial
Long-time-delay time setting (sec,
SL type 10-15-20-25-30
. This value specifies the operating time when the current flowing is the uninterrupled curn solver (Stype) and $\times 5$ (SL type).
long-time-dela operating time is half of the long-time-delay time setting.

*ontact rating (A)			
Voltage (V)			Resistive load
AC	Inductive load		
	250	2	2
	30		
	125	0.2	0.1

${ }^{* *}$ Control supply (V)
AC $100-120 / 200-240(50-60 \mathrm{~Hz})$
DC 100-110
DC 125
DC 24
DC 48

Control supply capacity : more than 5VA
Unless otherwise specitied in your order the
electronic trip relays will be delivered set
the values shown in blue letter

E Temperature Alarm (TAL) Display methods: Both an LED indicator $($ red) and a relay
Contact rating (A)

1. A signal is generated when the unusual temperature of the main contacts rises above the threshold level.
2. The LED will go out when the control power supply is interrupted or when the reset button is pushed.

OCR Alarm Contact (AL) Contact rating (A)*
An alarm signal is output to the contac when the breaker is following causes: \square Long-time-delay (L) \square Short-time-delay (S)/Inst. trip (I) or MCR
2. An external self-hold circuit is required as the alarm signal pulse has a duration of only 0.03 sec .

M Ground Fault TRIP/ALARM Switch
The breaker will trip when the switch is set to the "TRIP" position.
When the switch is set to the "ALARM" position a red trip indicator LED will light up and the relay output will be activated when a ground fault occurs; the breaker will not trip, however.
The switch must be set to the "TRIP"
position when the overcurrent tripping characteristic is activated.

N TEST Terminal Test functions 1. Tripping characteristics
Long-time-delay (L) Long-time-delay (L) \square Instantaneous (I)
\square Pre-alarm (P)
\square Ground fault (G)
A field test device is required
${ }^{\text {A field test }}$ (see p.39)

F Largest Phase
Display method: LED (green)
LED indicator
central inators are provided for the left, central and right poles. One LED is always on when
through the breaker
The LED goes out when the breaker trips
2. The LED goes out when the breaker trips. current measurement (LM) option.
Load Current Measurement (LM) The load current can be measured at termia signal of 10 VDC is output (see p .36 for further details).
2. A control power supply is required.**

Short-Time-Delay

O STD P.U. Current (Is) Setting Dial
2-3-4-6-8-10 (1) \times Setting (A)
Current threshold value setting for short-time-delay tripping.

P STD Time(Ts)
Setting Dial
Time-delay setting (sec.)
$0-0.1-0.2-0.3-0.4-0.5$

1. The setting value is the operating time when the current flowing is the short-
time-delay current setting (Is) $\times 1.5$ If the dial is set to 0 second the breaker will trip in 0.05 seconds.
Q STD Lock Button When measuring the instantaneous tripping tion inhibitit button (STDD LOCK) in order to disable the short-time-delay tripping

Instantaneous
R INST. P.U. Current (Ii) Setting Dial
Rated current (In) \times Setting (A)
Sets the threshold current value for instantaneous tripping.

S INST/MCR Switch

 Setting this switch to "INST" selects the instantaneous operation characteristic. Characteristic . "etting selects the MCR The MCR characteristics the abbreviation for Making Current Release. With this characteristic, instantaneous tripping is onlypossible if a short circuit occurs during switch-ON. After the initial switch-ON, the time delay tripping characteristic is active but the instantaneous tripping is not
possible.

Electronic trip relay (Generator protection use M type)

A Trip Indicator (T)
Displays:
\square Short-time-delay (S)/Instantaneous (I)
Ground fault (G)
Display method:
Display method:
Both an LED display (red) and a relay
Both an LED display (red) and a relay

1. A control power supply is required. **
2. The LED will go out when the control
power supply is switched off or when the
reset button is pressed.

Ground Fault Protection (GFR)
G GFR P.U. Current (IG)
Setting Dial
Rated current MAX
$0.1-0.2-0.3-0.5$ rated current values (IN NaX.) 315A, 500 A and AE630-SH.

H GFR Time (Tg
 Setting Dial

GFR time setting (sec.)
${ }^{0.3-0.8 .8-1.5-3}$
The setting specifies the operating time when the current flowing is the ground
fault current value setting (IG) $\times 1.5$ (see p. 42 for further details)

B Load Current
Indicates the percentage of long time delay current (IL) 50-60-70-80-90-100
Display method:
LED colour
$\square 50$ to $70 \%=$ Green
$\square 80$ to $90 \%=$ Yellow
$\square 100 \%=$ Red
The LEDs go out when the breaker trips.

(D) RESET

1. Pressing this button resets the displays. relay outputs of the following signals: \square Trip indicator
\square Temperature alarm

C Pre-Alarm Display (PAL) Display method: Both an LED display Contact rating (A)

1. The "PAL" LED lights up when the preset value is exceeded; the relay is not
activated when this happens, however. 2. The relay output is activated when the "PAL OUT" LED lights up.
. A control power supply is required.
2. The LED will go out when the control supply is interrupted or when the reset
buttons pressed buttons pressed. less than the pre-alarm current, the "PALOUT" LED will go out.

I Rated Current (In)

Setting Dial
The rated current must be preset to a fixed value (select a value between 0.5
and $1 \times$ the Rated current MAX(INma) and $1 \times$ the Rated current MAX(In max).). unit.

J Pre-Alarm Current (Ip) Setting Dial
-ong-time-delay current value
(IL) \times Setting (A)
$0.84-0.88-0.92-0.96-1.0$
Threshold value for pre-alarm operation.
If the setting value is exceeded the "PAL EED will light.

Overload Protection
K Long-Time-Delay Current (IL) Setting Dial
Rated current (IN) \times Setting (A)
${ }^{1-1.05-1.1-1.1 .15-1.2}$

1. The breaker trips within a range from (IL) $\times 0.95$ to 1.05
percentage of the lon displayed as a (IL).
2. The pre-alarm set value varies proportionally to the long-time-delay ent setting.
\square LTD Time (TL)
Setting Dial
Long-time-delay setting (sec.
15-20-25-30-40-60
when the current flow the operating time When the current flowing is the long-time-
delay current set value 2. The pre-alarm operating time is half of the long-time-delay setting

This overview lists the maximum possible unctionally of the units.
ons are included as 1. Displays

Trip indicator (TI)

- Load current indicator (LCI)
\square Display reset button

2. Protective functions
\square Overload protection (long-time-delay) \square Short-circuit protection (short-time-delay) \square Short-circuit protection (instantaneous) 3. Peripherals

Shor-time-delay operation inhibit button
Test terminal

$\left.$| *Contact rating (A) | | | |
| :---: | :---: | :---: | :---: |
| Voltage (V) | | | | | Resistive |
| :---: |
| load | | Inductive |
| :---: |
| load | \right\rvert\,

Control supply capacity : more than 5VA
Unless otherwise specified in your order the
electronic trip relays will be delivered set to
the values shown in blue letter.

E Temperature Alarm (TAL) Display methods: Both an LED indicator $($ red) and a relay
Contact rating (A)

1. A signal is generated when the unusual temperature of the main contacts rises above the threshold level.
2. The LED will go out when the control power supply is interrupted or when the reset button is pushed.

OCR Alarm Contact (AL)
Contact rating (A)*
An alarm signal is output to the contac when the breaker is tripped by one of the following causes:
\square Long-time-delay (L)
Instant-time-deneous (rip (I)
\square Ground fault (G)
2. An external self-hold circuit is required as the alarm signal pulse has a duration as the alarm signal
of only 0.03 sec.

ELECTRONIC TRIP RELAY

Short-Circuit Protection Short-Time-Delay 0 STD P.U. Current (Is) Setting Dial

2-2.5-3-3.5-4-4.5
Current threshold value setting for short-
P
P STD Time(Ts
Setting Dial
Setting Dial
0-0.1-0.2-0.3-0.4-0.5
.The setting value is the operating time time-delay current flowing is the ShortIf the dial is set to setting (1s) $\times 1.5$. will trip in 0.05 seconds.
Q STD Lock Button
When measuring the instantaneous delay operation inhibit button (STD LOCK) in order to disable the Short-timedelay tripping functio
Instantaneous
R INST. P.U. Current (Ii)
Setting Dial
Rated current
$4-6-8-10-12-16$
Sets the threshold current value for T LTD (TL)
Fine Adjustment Dial
Fine adjustment is available from 0.8-1.0-
1.2 of the Long-time-delay setting value (TL).

M Ground Fault TRIP/ALARM
The breaker will trip whe
set to the "TRIP" position
set to the "TRIP" position.
When the switch is set to the "ALARM" postion a red trip indicator LED will light up and the relay output will be activated when a ground fault occurs; the breaker will not trii, however.
. The switch must be set to the "TRIP" characteristic is activated.

N TEST Termal Tes functions 1. Tripping characteristics Long-time-delay (L) Shot-time-delay (S) \square Pre-alarm (P)
\square Ground fault (G)
A field test device is required
(see p.39)
. This setting
3. Continueus adjustable.
e numbers coloured blue from \mathbf{O} to \mathbf{T} will be set in factory side, without any

Electronic trip relay accessories

Ground fault protection (GFR)

Sometimes the Long-time-delay or Short-time-delay functions will not protect a circuit even if there is a ground fault of several hundred amps. In which case, the ground fault protection function (GFR) is used. The sensitivity is selectable in the range of $0.1-0.2-0.3-0.5$ times the Rated current MAX. (In max), and the operating time is selectable from the range of $0.3-0.8$ -$1.5-3$ seconds. A control supply is not required for the operation of the ground fault protection.
Note 1: In a 3 -phase, 4 -wire circuit, ground fault protection is also possible with a 3 pole breaker and a Neutral-pole CT (NCT) see page 37.

Note 2: The ground fault protection (G) is not available for AE-SS series with the Rated current MAX. (Inmax) coming to 315 A or 500 A , or for AE630-SH.

Earth leakage protection (ER)

The earth leakage alarm facility is provided by using a electronic trip relay with earth leakage protection (E characteristics) and a external ZCT (see page 37.)
Even if several amperes of earth leakage current flow, the alarm alone operates but the breaker does not trip. This is therefore suitable when a continuous power supply is required. Should the breaker be required to trip on earth leakage, the above should be used with a SHT.
Note 1: The shunt tripping device (SHT) is suitable for $100-250 \mathrm{~V}$ AC/DC or less.
Note 2: Output contact is self-hold type.
The output contact is turned off when the reset button is pressed or control supply is turned off.

- Connection diagram (Earth leakage alarm system)

- Connection diagram (Earth leakage tripping system)

This function protects the neutral pole (4 pole) of the circuit breaker from overcurrent. Neutral overcurrent protection can be set to operate at 50% or 100% of the rated current (not changeable). Load equipment (for example: computer equipment, DC power supplies, etc) which is liable to generate third harmonic wave forms that may cause more load current to flow in the neutral pole, which may cause damage, the neutral pole overcurrent protection will prevent damage from occuring.
Note 1: The ST type electronic trip relay can be selected when the 4 pole breaker is used. When order NP, indentify " 50% protection" or " 100% protection"
Note 2: Not available for AE4000-SS~6300-SS

Connection diagram

Pre-alarm (PAL)

If the load current of the breaker exceeds the set value, A "PAL" LED lights and a relay output is energized. This is useful in securing a continuous power supply to a important circuit. The operating characteristic shown on the curve is proportional to half of the Long-time-delay tripping characteristic. It is designed to prevent unnecessary alarms from the inrush currents to the load. Moreover, the relay output is of a self-hold type for the general use relay and an auto reset type for the generator protection use relay. (The control supply and reset button are used in common with the trip indicator.)

Note: "TL" represents the Long-time-delay time

OCR alarm (AL)

The OCR alarm (AL) is a short-time operating switch (1a) for the electrical indication of when the breaker trips due to overcurrent. The AL is an integral part of the electronic trip relay. Though it operates when the breaker trips due to the Long-time-delay, Short-timedelay, Instantaneous/MCR, Ground fault protection (GFR), It does not operate when the breaker trips due to the Earth leakage protection (ER).

Note:Though a control supply is not required for the operation of the OCR alarm (AL), a self-hold circuit is required since the relay output only operates for 0.03 seconds.

Note:When a continuous output signal from the OCR alarm (AL) is required please use the output signal from the trip indicator (TI) which is operated by the same causes as the OCR alarm (AL).

Load current measurement (LM)

A direct current voltage, converted from the effective value current in the overcurrent tripping device, is taken out by using an insulation amplifier. Use the receiving indicator that can be operated by an input of $0-10 \mathrm{~V}$ DC since the voltage signal proportional to the largest phase current is transmitted. Moreover, the maximum current flowing phase is displayed on the front of the relay as the subordinate option, the "largest phase" indicating LED, is lighting.
Note 1: See to it that the wiring is within 3 m of the breaker control circuit terminal by using the twist pair wire (over 40 turns $/ \mathrm{m}$)
Note 2: The required control power supply is common to the trip indicator.
-Output characteristics

If the temperature of the main contact rises above a pre-determined level, a LED will light and a relay contact (1a) will energize. This will prevent trouble and increase contact life, a useful preventive maintenance feature. (The control supply and the reset button are used in common with the trip indicator.)

■ Accessories (External accessories 1/2)

Neutral CT (NCT)

The neutral CT is used for ground fault protection when a 3 pole breader is used on a 3 phase 4 wires system. It should be used together with the electronic trip relay that has the ground fault protection (G) option.

Type	Applicable CT type
AE 630-SS/SH	CW-40LM 630A
AE 1000-SS/SH	CW-40LM 1000A
AE 1250-SS/SH	CW-40LM 1250A
AE 1600-SS/SH	CW-40LM 1600A
AE 2000-SS/SH	CW-40LM 2000A
AE 2500-SS/SH	CW-40LM 2500A
AE 3200-SS/SH	CW-40LM 3200A
AE 4000-SS, SSC	CW-40LM 4000A
AE 5000-SS	CW-40LM 5000A
AE 6300-SS	CW-40LM 6300A

Note: A suitable resistor ($0.1 \Omega 10 \mathrm{~W}$) and screened wire $(2 \mathrm{~m})$ is attached on the product.

- Wiring diagram

External ZCT

This option is used to detect several amperes of earth leakage when use in combination with a electronic trip relay that has the earth leakage tripping (ER) option.
Two methods are available: The first is where the three load conductors (and neutral in 4 wires system) pass through the ZCT. The other method uses a smaller ZCT through which the supply transformer's ground wire passes through to earth.

- Type

Application	External ZCT for load circuits			External ZCT for transformer ground wire					
Type	ZCT163	ZCT323	ZCT324	ZT15A	ZT30A	ZT40A	ZT60A	ZT80A	ZT100A

Note: A screened wire (2m) is attached on the product.

1. Wiring diagram (load circuit method)

2. Wiring diagram (transformer ground wire method)

1. External ZCT for load circuits

- Dimension table

Type Dimension	ZCT163	ZCT323	ZCT324
A	230	370	500
B	60	108	108
C	323	460	600
D	250	400	550
E	47	47	48

2. External ZCT for transformer ground wire

(1) Dimension table of ZT15A, 30A, 40A

Type	ZT15A	ZT30A	ZT40A
Dimension	Z	48	68
B	15	30	45
C	29	37	43
D	62	82	92
E	46	66	81
F	15	30	40
G	70	90	100
H	25	50	50

(2) Dimension table of ZT60A, 80A, 100A

Type Dimension	ZT60A	ZT80A	ZT100A
A	140	160	185
B	60	80	100
C	73	82	93
D	150	169	190
E	46	48	50

Accessories (External accessories 2/2)

Field test device

The electronic trip relay can be checked without the breaker being connected to the main supply. The breaker will trip when tested.
$\mathrm{Y}-160$ test device is not available for M type relay.

Type	Y-2000	Y-160
Test function	LTD, STD, INST, GFR Pre-alarm	LTD, STD, INST, GFR
Power supply	AC100-240V $50-60 \mathrm{~Hz}$	Battery use
	•AC100-120V	
•AC200-240V		

External power supply unit (PS)

This unit is used when a 24 VDC control supply is needed for the trip indicator on the electronic trip relay The unit can be installed from the front to the left side of the breaker.

Item Type	PS-A200	PS-D200	PS-A400		
Input voltage	$100-110 /$ $200-24 \mathrm{VAC}$ $(50-60 \mathrm{HZ})$	200 VDC	$380-415 \mathrm{VAC}$ $(50-60 \mathrm{HZ})$		
Input voltage range	+10 -15$\%$	+10 -15$\%$	+10 -15$\%$		
Input VA	30 VA MAX	30 W MAX.	30 VA MAX.		
Output voltage	$24 \mathrm{VDC} \pm 10 \%$		0.42 A MAX		$24 \mathrm{VDC} \pm 10 \%$
:---:					
0.3 MAX					

- Outline dimensions

Circuit diagram of the electronic trip relay

Circuit diagram of the electronic trip relay(SPGT)

Operating function of each device

(1) Power supply CT

Energy is supplied for the operation of the overcurrent tripping and ground fault tripping (GFR) function of the electronic trip relay.
(2) Current sensor coil

The current in each phase flowing through in the breaker is detected. A coreless coil which has good linearity is employed. The integrating circuit integrates the output voltage and provides a signal voltage waveform which is in proportion with the load current.
(3) LTD circuit

This is an effective value detection type which is strong against the distored wave. It has a memory effect for the overcurrent state. If the electronic trip relay is tripped, the overcurrent memory is reset.
(4) Pre-alarm circuit

This is an effective value detection system. As it does not have a memory effect for the overcurrent state, once the load current becomes less than the value of the pre-alarm setting current, it is reset.
(5) STD/INST circuit

This is a peak value detection system, and is influenced by the distortion of the waveform.
(6) Ground fault circuit

The signals in each phase are summed in the vector mode in order to gain the ground fault value.
(7) Current measuring output circuit

This is an effective value detection system, since insulation amplifieris are used, it is insulated between the input and output.
(8) OCR alarm circuit

An alarm signal is output to the contact when the breaker is tripped. Signal pulse has a duration of only 0.03 seconds.
(9) Trip indication circuit

The trip indicator is operated simultaneously with the OCR alarm, when the breaker tripped because of Long time delay, short time delay/instantaneous and Ground fault or Earth leakage.
A control power supply is required.

Operating characteristics (General use)

C type: AE630-SS/SH~AE3200-SS/SH

Characteristics from the factory
Adjustable characteristics
Not available for AE4000-SS~AE6300-SS

Operating characteristics (General use)

S type : AE630-SS/SH~AE3200-SS/SH, AE4000-SSC

\square Operating characteristics (General use)

S type : AE4000-SS~AE6300-SS

Operating characteristics (General use)

SL type : AE630-SS/SH~AE3200-SS/SH, AE4000-SSC

\square Operating characteristics (General use)

SL type : AE4000-SS~AE6300-SS

Operating characteristics (Generator protection use)

M type : AE630-SS/SH~AE3200-SS/SH, AE4000-SSC

Operating characteristics (Generator protection use)

MAX. time of let-through current and B type relay characteristics

B-COA

(Not available for AE-SH)

-Tripping characteristics setting

Setting procedure

1.A small flat-tipped screwdriver is prepared.

2. Insert the flat-tipped screwdriver into the opening of the electronic trip relay cover. Then, lightly press the screwdriver leftward, and the cover will open.
3.There are 4 types of switches for setting up the required tripping characteristics and they should be used as follows:-

(1)Step adjustable type

A rotary switch is used. Do not stop the switch between steps as it would be the same setting value as that associated with the nearest step line. (Operate the switch with a torque of $0.1 \mathrm{~N} \cdot \mathrm{~m}$ or less.)
(2)Continuously adjustable type

Since a variable resistor is used, it is adjustable to any desired position on the scale. (Operate the switch with a torque of $0.1 \mathrm{~N} \cdot \mathrm{~m}$ or less.)
(3)Slide switch type

Slide the switch to the left or right. (operate the switch with a force of 1 kg or less.)

(4) Pushbutton type

A pushbutton is provided for termporary operation. Press it with a force of 1 kg or less. Before operating make sure that the push-button is in its initial state.
4. When the characterisitics have been set, they should be checked using a field tester etc.
5. Two methods for sealing the cover are provided, select either from the following:-.
(1)Stick the sealing label on the opening of the electronic trip relay cover, and close the cover. The cover can not be opened unless the sealing label is removed. Note: The sealing label is supplied with the relay.
(2)Seal the electronic trip relay cover by using the lead sealing hole at the bottom of the cover.

(2) Continuously adjustable type

(1) Step type (4) Push-button type (3) Slide switch type

How to adjust the trip relay of AE-SS

AE-SS has very intelligent relay with multi functions.
But sometime, it seemed to be difficult to adjust it.
This report can help you to solve such questions.
<Front view of the relay>
The relay is set as follows.

[^0]
■ripping characteristics setting (2/3)

How to get the current settings and operating times

<Actual setting>

Current settings and operating times are calculated.

Actual settings are as following table.

Inmax	$=1600 \mathrm{~A}$	II	$=15360 \mathrm{~A} \pm 15 \%$
In	$=1280 \mathrm{~A}$	Ip	$=921.6 \mathrm{~A} \pm 10 \%$
Iu	$=1152 \mathrm{~A}$	PAL pick-up time $=50 \mathrm{sec} \pm 20 \%$ (at 2304 A)	
LTD TIME	$=100 \mathrm{sec} \pm 20 \%$ (at 2304A)	IG	$=160 \mathrm{~A} \pm 20 \%$
Is	$=3840 \mathrm{~A} \pm 15 \%$	GFR TIME $=0.8 \mathrm{sec} \pm 20 \%$ (at 240A)	
STD TIME	$=0.3 \sec \pm 20 \%$ (at 5760A)		-

<Characteristic curve> (1)
In above settings, operating characteristics are set as follows.

Tripping characteristics setting (3/3)

<Characteristic curve> (2)
Actual operating characteristics are shown is following curve by \%-A figure.

Tripping characteristics check

Test terminals are provided at the right hand lower area on the front panel of super AE Series electronic trip relay. These terminals are for checking the tripping characteristics. by using a special field tester or by using a DC power supply.

Functions of the test terminals

1. Trip check (TC) terminal

The breaker will trip when a power supply of 30VDC \pm 10% is applied across terminals (TC) and (VT-) shown in the figure on the right.
2. Test power supply terminals ((VT+) and (VT-)) The power supply input terminals are used to test the tripping characteristics of the Long-time-delay. Short-time-delay and Instantaneous tripping. A power supply capacity of 5 W at $30 \mathrm{VDC} \pm 10 \%$ is required.
3. Overcurrent signal (OS) terminal When measuring the overcurrent tripping characteristics, input the AC voltage signal between terminals (OS) and (GG). The standard signal sizes are as follows.
Note:In case of M relay R, S, T can be independently checked. Please apply for further details.

AC voltage signal

Frequency	Signal level	Test voltage
50 Hz	141 mV AC	$141 \mathrm{mV} \times \frac{\text { Test current }}{\text { IN mAx }}$
60 Hz	170 mV AC	$170 \mathrm{mV} \times \frac{\text { Test current }}{\text { IN max }}$

- The signal is equivalent to the Rated current MAX. (Inmax.).

Test connector (JST brand)
Housing RF-08
Contact RF-SC2290
4. Ground fault signal terminal (GS)

When measuring the ground fault tripping characteristics (G characteristics), input the AC voltage signal between terminals (GS) and (GG). The standard signal levels are the same as for the overcurrent signal (OS).

Checking procedure using a field tester (Y -160 and $\mathrm{Y}-2000$)

If the test power supply or a similar signal is applied to the test terminals of the electronic trip relay, the overcurrent tripping characteristics or ground fault tripping characteristics can easily be measured. Two models are available: Model Y-160 a small battery type and Model Y-2000 which can measue all the characteristics.
(Refer to page 39)

- Points to remember during testing
(1) If any current flows in the main circuit of the breaker, the correct characteristics will not be measured since the current will distort the test signal. Therefore, ensure that the test is conducted when the load current does not exist in the main circuit.
(2) Before measuring the Long-time-delay. time, remove any influence which may result from energization, before the test, by tripping the breaker once with the trip check.
(3) The Instantaneous tripping current is the value measured when the breaker is gradually tripped, by increasing the overcurrent signal (OS) and continuously pressing the "STD LOCK" button (When using the Model Y-2000)

Wiring diagram (According to EN50005)

The Fig. below is the wiring diagram at fully equipped state.

Internal wiring diagram

On the draw-out type, the control circuit terminal block
moved to the left or right by 5 mm , after cables connecting

- When usin coil loads such as DC magnetic switch, etc. as operating voltage in the peripheral circuits, install diodes, surge absorbers,
etc. as a countermeasure against the surge (counter electromotive force) at the time of switching.
- Because of pumping prevention is not performed, do not use AXb contact for a cut-off of closing coil.

[13) [54	Auxiliary switch contact a	[1] [2	For N -pole CT or external ZCT connection	(Table-1)		
111~52	Auxiliary switch contact b	[1] [M2	Load ammeter	Applicable power sup		
413414	Charged signal a	[97] 98	OCR alarm contact		ge(V)	Input terminal
U1 U2	Motor charging	524~544	Trip indication contact		(0-120	L1, L2
A1] A2	Closing coil	554	Pre-alarm indication contact	AC ${ }^{\text {¢ }}$	200-240	L1, L3
[1] [C2	Shunt trip	564	Temperature alarm contact		100-110	
Ј1 ${ }^{12}$	Under voltage trip	L11[2] [3	Electronic relay unit control power supply	DC	$\frac{125}{24}$	L4, L2
713 714	Earth leakage trip output (for SHT trip)	311~ 344	Cell switch		48	

(1)	Motor	Q GFRor ER	Ground fault trip or earth leakage indication LAMP
CC	Closing coil	Q PAL	Pre-alarm indication LAMP
SHT	Shunt trip device	Q TAL	Temperature alarm indication LAMP
UVT	Under voltage trip coil	X	Self-hold relay
AL	OCR alarm (30ms)		Wiring completed by the factory
QLTD	Long-time-delay trip indication LAMP	---	Wiring by the user
\otimes STDMST	Short-time-delay or instantaneous trip indication LAMP		

■ Outline dimensions (1/4)

Drawout type AE630-SS~AE1600-SS

Drawout type AE2000-SS~AE3200-SS

■ Outline dimensions (2/4)

Drawout type AE4000-SSC (3P)

Styo 2 FE

Drawout type AE4000-SS~AE6300-SS

Outline dimensions (3/4)

Drawout type AE630-SH~AE3200-SH

Fixed type AE630-SS/SH~AE3200-SS/SH

Outline dimensions (4/4)

Fixed type AE4000-SSC (3P)

Front view

Side view

Rear view

Technical information (1/3)

Pre-cautions when making connections

For the terminal connections, use M12 bolts, washers and spring washers.
In order to prevent increased contact resistance due to humidity, silver plating of the contact surface of the conductor which is connected to the terminal of the breaker, is recommended. Also clean the contact surface, and securely connect them at a suitable torque.

Standard Tightening Torque

Screw size	Tightening torque (N $\cdot \mathbf{m}$)
M12	$40 \sim 50$

Since fault current flowing through the conductors cause large electromagnetic forces, the conductors should be secured firmly, using the values in Table on the right as a reference. Max busbar supporting distance nearest to ACB is less than 200 mm .

Electromagnetic force in $\mathrm{kg} \cdot \mathrm{f}$ per 1 m conductor (in the case of three phase short circuit)

(in the case of three phase short circuit)				
Type (A)	AE630-SS AE1600-SS	$\begin{gathered} \text { AE2000-SS } \\ ? \\ \text { AE3200-SS } \\ \text { AE - SH } \end{gathered}$	AE4000-SSC	AE4000-SS AE6300-SS
	85	130	195	262
30 (0.2)	750	450	340	230
42 (0.2)	1460	890	670	450
50 (0.2)	2080	1250	940	630
65 (0.2)	3510	2120	1590	1060
85 (0.2)	6020	3620	2720	1810
100 (0.2)	-	5010	-	2510
130 (0.2)	-	8470	-	4240

When selecting conductors for connection to a Series AE breaker, ensure that they have a sufficient current capacity, refer to Table on the right.

Conductor Size (IEC-60947-1 ; 40 ${ }^{\circ} \mathrm{C}$ Ambient Temp., Open air)

Rated current Max. (A)	Connecting conductors (copper bus bar)		
	Arrangement	Quantity	Conductor size (mm)
630	With long surface vertical	2	40×5
1000	With long surface vertical	2	60×5
1250	With long surface vertical	2	80×5
1600	With long surface vertical	2	100×5
2000	With long surface vertical	3	100×5
2500	With long surface vertical	4	100×5
$3150(3200)^{* 1}$	With long surface vertical	3	100×10
$4000^{* 2}$	With long surface vertical	4	100×10
5000	With long surface vertical	4	150×10
6300	With long surface vertical	4	200×10

$* 1$.The temperature rise of rated current 3200 A conforms to the requirement of IEC 60947-1 for the connecting conductor size of a rated current of 3150A.
In case of more then 3200A, conductor sizes are not given in IEC 60947-1.
*2. In case of AE-4000-SSC, refer to P59, 63.

Line side insulation clearance

When a short-circuit current is interrupted, hot gas blows out discharged from the exhaust port of the arc extinguishing chamber, so provid a clearance as shown in the following table.

- On the fixed type, maintenance is possible with following clearance.

- Dimensions
(mm)

Type		$\begin{aligned} & \text { AE630-SS } \\ & ? \\ & \text { AE3200-SS } \\ & \text { AE4000-SSC } \end{aligned}$		AE4000-SS AE6300-SS AE-SH
Applicable voltage		AC600V or less	AC660V,690V	AC690V or less
Fix type	A	(Note 1) 0	(Note 1) 100	(Note 1) 200
	B	(Note 3) 50	(Note 3) 50	(Note 3) 50
	C	162	162	-
	D	(Note 2) 50	(Note 2) 50	200
Drowouttype	A	0	100	(Note 1) 200
	B	(Note 3) 50	(Note 3) 50	(Note 3) 50
	C	240	240	-
	D	(Note 2) 50	(Note 2) 50	200

Note 1: 300 mm or more clearance is necessary to inspect the arc-extinguishing chamber and contacts.
Note 2: The wiring space reguired for the control terminal block.
Note 3 : In case dimension B becomes larger when the UVT controller, the mechanical interlock, door interlock, etc, are installed.

Service conditions

1 Normal service condition

If under ordinary conditions the following normal working conditions are all satisfied, the AE Series air circuit breaker may be used unless otherwise specified.

1. Ambient air temperature

A range of max. $+40^{\circ} \mathrm{C}$ to min. $-5^{\circ} \mathrm{C}$ is recommended.
However, the average over 24 hours must not exceed $+35^{\circ} \mathrm{C}$.
2. Altitude
$2,000 \mathrm{~m}(6,600$ feet) or less
3. Environmental conditions

The air must be clean, and the relative humidity 85% or less at a max. of $+40^{\circ} \mathrm{C}$. Do not use and store in atmospheres with sulfide gas, ammonia gas etc.
($\mathrm{H}_{2} \mathrm{~S} \leq 0.01 \mathrm{ppm} \mathrm{SO}_{2} \leq 0.1 \mathrm{ppm} \mathrm{NH}_{3} \leq$ a few ppm.)
4. Installation conditions

When installing the AE Series air circuit breaker, refer to the installation instructions in the catalogue and instruction manual.
5. Strage temperature

A range of max. $+60^{\circ} \mathrm{C}$ to min. $-20^{\circ} \mathrm{C}$ is recommended to store. However, the average over 24 hours must not exceed $+35^{\circ} \mathrm{C}$.
6. Replacement

Approx. 15 years.
Please refer to the instruction manual.

2 Special service conditions

In the case of special service condition, modified air circuit breakers are available. Please specify when ordering. Service life may be shorter depend on service conditions.

1. Special environmental conditions

If it is used at high temperature and/or high humidity, the insulation durability and other electrical/mechanical features may deteriorate. Therefore, the breaker should be specially treated. Moisture fungus treatment with increased corrosion-resistance is recommended. Since some parts may pose problems due to corrosion in the environments where corrosive gas results from the corrosion, the increased Extracorrosion proof specifications is recommended.
2. Special ambient temperature

If the ambient temperature exceeds $+40^{\circ} \mathrm{C}$, the uninterrupted current rating will be reduced. Since the reduction value is different depending on the applicable standard, refer to P68.
3. Special altitude

If it is used at the $2,000 \mathrm{~m}$ or higher the heat radiation rate is reduced decreasing the operating voltage rating, continuous current capacity and breaking capacity. Moreover the durability of the insulation is also decreased owing to the atmospheric pressure. Apply for further detail.

■ Technical information (2/3)

Internal resistance, reactance and power consumption (per pole)

Type	Connection	Internal resistance ($\mathrm{m} \Omega$)	Reactance ($\mathrm{m} \Omega$)	Power consumption (W)
AE630-SS	Fixed type	0.028	0.059	11
	Drawout type	0.042	0.089	17
AE630-SH	Fixed type	0.020	0.047	8
	Drawout type	0.030	0.071	12
AE1000-SS	Fixed type	0.026	0.060	26
	Drawout type	0.040	0.091	40
AE1000-SH	Fixed type	0.018	0.047	18
	Drawout type	0.028	0.071	28
AE1250-SS	Fixed type	0.024	0.060	38
	Drawout type	0.038	0.091	60
AE1250-SH	Fixed type	0.016	0.047	25
	Drawout type	0.026	0.071	41
AE1600-SS	Fixed type	0.016	0.063	41
	Drawout type	0.030	0.095	77
AE1600-SH	Fixed type	0.014	0.047	36
	Drawout type	0.024	0.071	61
AE2000-SS	Fixed type	0.010	0.047	40
	Drawout type	0.020	0.071	80
AE2000-SH	Fixed type	0.012	0.047	48
	Drawout type	0.022	0.071	88
AE2500-SS	Fixed type	0.008	0.047	50
	Drawout type	0.018	0.071	113
AE2500-SH	Fixed type	0.010	0.047	63
	Drawout type	0.020	0.071	125
AE3200-SS	Fixed type	0.008	0.048	72
	Drawout type	0.014	0.072	143
AE3200-SH	Fixed type	0.009	0.048	92
	Drawout type	0.016	0.072	164
AE4000-SSC	Fixed type	0.008	0.048	128
	Drawout type	0.014	0.072	224
AE4000-SS	Drawout type	0.013	0.062	210
AE5000-SS	Drawout type	0.011	0.062	275
AE6300-SS	Drawout type	0.0085	0.062	340

- The above values are applicable for one pole.

Deratings by ambient temperature

Standard	Ambient temperature	$\begin{aligned} & \text { AE630-SS } \\ & \text { AE630-SH } \end{aligned}$	AE1000-SS AE1000-SH	AE1250-SS AE1250-SH	AE1600-SS AE1600-SH	AE2000-SS AE2000-SH	$\begin{aligned} & \text { AE2500-SS } \\ & \text { AE2500-SH } \end{aligned}$	$\begin{aligned} & \text { AE3200-SS } \\ & \text { AE3200-SH } \end{aligned}$	AE4000-SSC	AE4000-SS	AE5000-SS	AE6300-SS
$\begin{gathered} \text { IEC60947-2 } \\ \text { BS } \\ \text { (Standard : } 40^{\circ} \mathrm{C} \text {) } \end{gathered}$	$40^{\circ} \mathrm{C}$	630	1000	1250	1600	2000	2500	3200	4000	4000	5000	6300
	$45^{\circ} \mathrm{C}$	630	1000	1250	1600	2000	2500	3200	3800	4000	5000	6000
	$50^{\circ} \mathrm{C}$	630	1000	1250	1600	2000	2500	3200	3650	4000	5000	5750
	$55^{\circ} \mathrm{C}$	630	1000	1250	$\begin{gathered} 1550 \\ (1600) \end{gathered}$	2000	2450	3000	3500	3900	5000	5500
	$60^{\circ} \mathrm{C}$	630	1000	$\begin{gathered} 1200 \\ (1250) \end{gathered}$	$\begin{gathered} 1500 \\ (1600) \end{gathered}$	2000	2350	2900	3300	3750	4750	5200
$\begin{gathered} \text { JISC8372 } \\ \text { JISC8370 } \\ \left(\text { Standard : } 40^{\circ} \mathrm{C}\right) \end{gathered}$	$40^{\circ} \mathrm{C}$	630	1000	1250	1600	2000	2500	3200	3600	4000	5000	6000
	$45^{\circ} \mathrm{C}$	630	1000	1250	1600	2000	2500	3200	3500	4000	5000	5800
	$50^{\circ} \mathrm{C}$	630	1000	1250	$\begin{gathered} 1500 \\ (1600) \end{gathered}$	2000	2500	3000	3350	4000	5000	5600
	$55^{\circ} \mathrm{C}$	630	1000	$\begin{gathered} 1200 \\ (1250) \end{gathered}$	$\begin{gathered} 1450 \\ (1600) \end{gathered}$	2000	2350	2900	3200	4000	4900	5450
	$60^{\circ} \mathrm{C}$	630	1000	$\begin{gathered} 1150 \\ (1250) \end{gathered}$	$\begin{gathered} 1400 \\ (1600) \end{gathered}$	2000	2250	2800	3050	4000	4700	5250
$\begin{gathered} \text { LR,AB,GL } \\ \text { DNV,BV } \\ \text { (Standard: } \left.45^{\circ} \mathrm{C}\right) \end{gathered}$	$45^{\circ} \mathrm{C}$	630	1000	1250	1600	2000	2500	3200	-	4000	5000	6000
	$50^{\circ} \mathrm{C}$	630	1000	1250	1600	2000	2500	3200	-	4000	5000	5750
	$55^{\circ} \mathrm{C}$	630	1000	1250	$\begin{gathered} 1550 \\ (1600) \end{gathered}$	2000	2450	3050	-	3900	5000	5500
	$60^{\circ} \mathrm{C}$	630	1000	1200	$\begin{gathered} 1500 \\ (1600) \end{gathered}$	2000	2350	2900	-	3750	4750	5200
NK (Standard : $45^{\circ} \mathrm{C}$)	$45^{\circ} \mathrm{C}$	630	1000	1250	1600	2000	2500	3200	3500	4000	5000	5700
	$50^{\circ} \mathrm{C}$	630	1000	1250	$\begin{gathered} 1500 \\ (1600) \end{gathered}$	2000	2500	3000	3350	4000	5000	5500
	$55^{\circ} \mathrm{C}$	630	1000	$\begin{gathered} 1200 \\ (1250) \end{gathered}$	$\begin{gathered} 1450 \\ (1600) \end{gathered}$	2000	2350	2900	3200	4000	4800	5300
	$60^{\circ} \mathrm{C}$	630	1000	$\begin{gathered} 1150 \\ (1250) \\ \hline \end{gathered}$	$\begin{gathered} 1400 \\ (1600) \\ \hline \end{gathered}$	2000	2250	2800	3050	4000	4600	5100

Note : The figures in () in the above Table indicate reduced current values exclusive to AE-SH series.

- Technical information (3/3)

Selective interrupting combinations table

AE-SS Series air circuit breakers provide easy selective co-ordination with branch circuit breakers. For selective co-ordinations, refer to the following table.

AC220V sym kA

			AE-SS										
			$\begin{gathered} \hline \text { AE630-SS } \\ \hline 65 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { AE1000-SS } \\ \hline 65 \\ \hline \end{array}$	$\begin{gathered} \hline \text { AE1250-SS } \\ \hline 65 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \text { AE1600-SS } \\ \hline 65 \\ \hline \end{array}$	$\begin{gathered} \text { AE2000-SS } \\ \hline 85 \end{gathered}$	$\begin{gathered} \hline \text { AE2500-SS } \\ \hline 85 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { AE3200-SS } \\ \hline 85 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { AE4000-SSC } \\ \hline 85 \\ \hline \end{array}$	$\begin{gathered} \text { AE4000-SS } \\ 130 \end{gathered}$	$\begin{array}{c\|} \hline \text { AE5000-SS } \\ \hline 130 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { AE6300-SS } \\ \hline 130 \\ \hline \end{array}$
$\begin{aligned} & \sum_{\dot{p}}^{n} \\ & \dot{i} \\ & \frac{1}{z} \end{aligned}$	NF30-SP MB30-SP MB50-CP	5	5	5	5	5	5	5	5	5	5	5	5
	NF50-SP NF60-SP MB50-SP	10	9(10)	10	10	10	10	10	10	10	10	10	10
	$\begin{aligned} & \text { NF50-HP } \\ & \text { NF60-HP } \\ & \hline \end{aligned}$	25	9(25)	25	25	25	25	25	25	25	25	25	25
	NF50-HRP	85	9(65)	50(65)	65	65	85	85	85	85	85	85	85
	NF100-SP NF100-SEP MB100-SP	50	9(50)	45(50)	50	50	50	50	50	50	50	50	50
	NF100-HP	100	9(65)	50(65)	65	65	85	85	85	85	100	100	100
	NF250-SP NF250-SEP MB250-SP	50	9(50)	20(50)	22(50)	42(50)	50	50	50	50	50	50	50
	NF250-HP	100	9(65)	25(65)	40(65)	65	85	85	85	85	100	100	100
	NF400-SP	85	-	-	20(65)	27(65)	42(65)	70	85	85	85	85	85
	NF400-SEP	85	9(65)	15(65)	20(65)	27(65)	42(65)	70	85	85	85	85	85
	NF400-HEP	100	9(65)	15(65)	20(65)	27(65)	42(65)	70	85	85	100	100	100
	NF400-REP	125	9(65)	15(65)	20(65)	27(65)	42(65)	70	85	85	125	125	125
	NF630-SP	85	-	-	-	24(65)	30(65)	40(65)	60(65)	85	85	85	85
	NF630-SEP	85	-	15(65)	18(65)	24(65)	30(65)	40(65)	60(65)	85	85	85	85
	NF630-HEP	100	-	15(65)	18(65)	24(65)	30(65)	40(65)	60(65)	85	85	85	85
	NF630-REP	125	-	15(65)	18(65)	24(65)	30(65)	40(65)	60(65)	85	85	85	85
	NF800-SEP	85	-	-	18(65)	24(65)	30(65)	40(65)	60(65)	85	85	85	85
	NF800-HEP	100	-	-	18(65)	24(65)	30(65)	40(65)	60(65)	85	85	85	85
	NF800-REP	125	-	-	18(65)	24(65)	30(65)	40(65)	60(65)	85	85	85	85
$\begin{aligned} & 0 \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \text { NF50-CP } \\ & \text { NF60-CP } \\ & \hline \end{aligned}$	5	5	5	5	5	5	5	5	5	5	5	5
	NF100-CP	25	9(25)	15(25)	18(25)	24(25)	25	25	25	25	25	25	25
	NF250-CP	30	9(30)	15(30)	18(30)	24(30)	30	30	30	30	30	30	30
	NF400-CP	50	-	15(50)	20(50)	27(50)	42(50)	50	50	50	50	50	50
	NF630-CP	50	-	-	-	24(50)	30(50)	40(50)	50	50	50	50	50
	NF800-CEP	50	-	-	18(50)	24(50)	30(50)	40(50)	50	50	50	50	50
$\underset{\stackrel{i}{z}}{\stackrel{\rightharpoonup}{z}}$	NF100-RP	125	65	65	65	65	85	85	85	85	125	125	125
	NF100-UP	200	65	65	65	65	85	85	85	85	130	130	130
	NF250-RP	125	9(65)	65	65	65	85	85	85	85	125	125	125
	NF250-UP	200	9(65)	65	65	65	85	85	85	85	130	130	130
	NF400-UEP	200	9(65)	15(65)	18(65)	29(65)	48(65)	85	85	85	130	130	130
	NF630-UEP	200	-	15(65)	18(65)	24(65)	30(65)	37(65)	68	85	120	120	120
	NF800-UEP	200	-	(18(65)	24(65)	30(65)	37(65)	68	85	120	120	120

- The values in the table represent the max. rated current for both Series AESS air circuit breakers and branch breakers, and the selective co-ordination applies when the AE-SS series air circuit breakers instantaneous pick up is set to maximum.
- The numerals shown in parentheses are for AE-SS with MCR. (When set MCR).

AC460V sym kA

			AE-SS										
			$\begin{gathered} \text { AE630-SS } \\ \hline 65 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { AE1000-SS } \\ \hline 65 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { AE1250-SS } \\ \hline 65 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { AE1600-SS } \\ \hline 65 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { AE2000-SS } \\ 85 \end{array}$	$\begin{array}{\|c\|} \hline \text { AE2500-SS } \\ \hline 85 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { AE3200-SS } \\ \hline 85 \end{array}$	$\begin{array}{\|c\|} \hline \text { AE4000-SSC } \\ \hline 85 \\ \hline \end{array}$	$\frac{\text { AE4000-SS }}{130}$	$\frac{\text { AE5000-SS }}{130}$	$\begin{array}{\|c\|} \hline \text { AE6300-SS } \\ \hline 130 \\ \hline \end{array}$
$\begin{aligned} & \sum_{\dot{m}}^{m} \\ & \dot{i} \\ & \frac{1}{z} \end{aligned}$	$\begin{aligned} & \text { NF30-SP } \\ & \text { MB30-SP } \\ & \text { MB50-CP } \end{aligned}$	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	NF50-SP NF60-SP MB50-SP	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
	$\begin{aligned} & \hline \text { NF50-HP } \\ & \text { NF60-HP } \\ & \hline \end{aligned}$	10	9(10)	10	10	10	10	10	10	10	10	10	10
	NF50-HRP	30	$9(30)$	30	30	30	30	30	30	30	30	30	30
	$\begin{aligned} & \text { NF100-SP } \\ & \text { NF100-SEP } \\ & \text { MB100-SP } \end{aligned}$	25	7(25)	20(25)	25	25	25	25	25	25	25	25	25
	NF100-HP	50	9(50)	30(50)	50	50	50	50	50	50	50	50	50
	$\begin{aligned} & \text { NF250-SP } \\ & \text { NF250-SEP } \\ & \text { MB250-SP } \end{aligned}$	25	7(25)	14(25)	19(25)	25	25	25	25	25	25	25	25
	NF250-HP	50	7(50)	15(50)	25(50)	42(50)	50	50	50	50	50	50	50
	NF400-SP	50	-	-	18(50)	24(50)	33(50)	45(50)	50	50	50	50	50
	NF400-SEP	50	9(50)	15(50)	18(50)	24(50)	33(50)	45(50)	50	50	50	50	50
	NF400-HEP	65	9(65)	15(65)	18(65)	24(65)	33(65)	45(65)	65	65	65	65	65
	NF400-REP	125	9(65)	15(65)	18(65)	24(65)	33(65)	45(65)	80	85	110	110	110
	NF630-SP	50	-	-	-	24(50)	33(50)	45(50)	50	50	50	50	50
	NF630-SEP	50	-	15(50)	18(50)	24(50)	30(50)	40(50)	50	50	50	50	50
	NF630-HEP	65	-	15(65)	18(65)	24(65)	30(65)	40(65)	60(65)	65	65	65	65
	NF630-REP	125	-	15(65)	18(65)	24(65)	30(65)	40(65)	60(65)	85	85	85	85
	NF800-SEP	50	-	-	18(50)	24(50)	30(50)	40(50)	60(50)	50	50	50	50
	NF800-HEP	65	-	-	18(65)	24(65)	30(65)	40(65)	60(65)	65	65	65	65
	NF800-REP	125	-	-	18(65)	24(65)	30(65)	40(65)	60(65)	85	85	85	85
$\frac{0}{\frac{1}{2}}$	$\begin{aligned} & \text { NF50-CP } \\ & \text { NF60-CP } \\ & \hline \end{aligned}$	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	NF100-CP	10	9(10)	10	10	10	10	10	10	10	10	10	10
	NF250-CP	15	9(15)	15	15	15	15	15	15	15	15	15	15
	NF400-CP	25	-	15(25)	18(25)	24(25)	25	25	25	25	25	25	25
	NF630-CP	35	-	-	-	24(35)	30(35)	35	35	35	35	35	35
	NF800-CEP	35	-	-	18(35)	24(35)	30(35)	35	35	35	35	35	35
$\underset{\stackrel{i}{z}}{\overrightarrow{2}}$	NF100-RP	125	35(65)	65	65	65	85	85	85	85	125	125	125
	NF100-UP	200	50(65)	65	65	65	85	85	85	85	130	130	130
	NF250-RP	125	9(65)	50(65)	65	65	85	85	85	85	125	125	125
	NF250-UP	200	9(65)	65	65	65	85	85	85	85	130	130	130
	NF400-UEP	200	9(65)	15(65)	18(65)	29(65)	48(65)	85	85	85	130	130	130
	NF630-UEP	200	-	15(65)	18(65)	24(65)	30(65)	37(65)	68	85	120	120	120
	NF800-UEP	200	二	-	18(65)	24(65)	30(65)	37(65)	68	85	120	120	120

- The values in the table represent the max. rated current for both Series AESS air circuit breakers and branch breakers, and the selective co-ordination applies when the AE-SS series air circuit breakers instantaneous pick up is set to maximum.
- The numerals shown in parentheses are for AE-SS with MCR. (When set MCR).

Ordering information for Mitsubishi AE-SS series air circuit breaker (General useS.SL Types)

Ordering information for Miisubishi AE-SS series air circuit breaker (Generator protection useM Types)

[MEMO]

Service network

Country/Region	Company	Address	Telephone
U.K.	Mitsubishi Electric Europe B.V. UK-Branch.	Travellers Lane, Hatfield, Herts, AL10 8 XB, England, U.K.	44-1707,276,100
Ireland	Irish Branch.	Westage Business Park, Ballymount, Dublin 22, Ireland.	353-1-4505007
Germany	German Branch.	Gother Strasse 8, 40880 Ratingen, Germany.	49-2102-4860
Italy	Carpaneto 10090 CASCINE VICA-RIVOLI (TO)	Via Ferrero, 10-Ang. Pavia 6 Italy.	39-11-9590111
Spain	Spanish Branch (Barcelona).	Polingono Industrial "Can Magi", Calle Joan Buscallà 2-4, Apartado de Correos 420,08190 Sant Cugat del Valles, Barcelona, Spain.	34-93-565-3131
Sweden	Euro Energy Components AB	Box 10161 S-43422 Kungsbacka	(0300)51800
Norway	SCANELEC	5074 Godvik Leirvikasen 43B. Norway.	47-55-506000
Denmark	ELPEFA A/S	Geminivej 32, DK-2670 Greve, Denmark.	45-43-694369
Greece	Antonios Drepanias.S.A.	ANTONIOS DREPANIAS 52, ARKADIAS STR.GR 121 32,PERISTERI ATHENS GREECE	30(1)5781599, 30(1)5781699
The Netherlands	R+H Technology BV.	3361 HJ Sliedrecht Industrieweg 30. Netherlands.	31-104871521
Switzerland	Trielec A G	8201 Schaffhausen Mühlentalstrasse 136. Switzerland	41-52-6258425
Belgium	Emac S.A.	1702 Groot-Bijgaarden Industrialaan 1, Belgium.	32-2-4810211
Poland	MPL Technology Sp zo.o.	30011 Krakow UI. Wroclawska 53 Poland.	48-12-322885
Israel	Gino Industries LTD.	3, Ophir St. 32235 Haifa Israel.	972-4-8670656
Turkey	HEDEF	Balmumcu-Istanbul Barboros Bulv. iba Bloklari Gazi Umur P. So Turkey.	90-212-2754876
Slovania	INEA	61230 Domzale Ljubljanska 80 Slovenia.	386-61-718000
South Africa	M.S.A.MANUFACTURING(PTY)LTD.	BRAMLEY 2018 JOHANNESBURG SOUTH AFRICA.	27-011-444-8080
Lebanon	COMPTOIR D'ELECTRICITE GENERALE-LIBAN	CEBACO CENTER-BLOCK A AUTOSTRADE DORA P.O. BOX: 90-1314, BEIRUT-LEBANON.	961-1-240430
Saudi Arabia	CENTER OF ELECTRICAL GOODS	AL-NABHANIYA STREET-4Th CROSSING AL-HASSA ROAD P.O. BOX: 15955 RIYADH 11454, SAUDI ARABIA.	966-1-4770149
Egypt	CAIRO ELECTRICAL GROUP	9 ROSTOUM STREET GARDEN CITY, P.O. BOX: 165-11516, CAIRO EGYPT.	202-356-1337
Kuwait	SALEM M AL-NISF ELECTRICAL CO.W.L.L.	P.O. Box 4784. Safat.13048.Kuwait.	965-484-5660
	SETSUYO AUSCHINA ELECTRIC CO. LTD.	Building of Innovation Center, Room No. 406A, Guiping Road Shanghai China	021-6485-6611
China	RYODEN INTERNATIONAL LTD.	3F Block 5 Building, Automation Instrumentation Plaza, 103 Cao Bao Road, Shanghai 200233, China	86-21-6475-3228
Hong Kong	Ryoden international Ltd.	10/F Manulife Tower 169 Electric Road North Point. Hong Kong.	28878870
Taiwan	Setsuyo Enterprise Co., Ltd.	8th FI. NO. 88 SEC. 6, Chung-Shan N Rd. Taipei, Taiwan	02-2381-3015
Korea	STC Techno Seoul Co., Ltd.(Setsuyo)	2 FI. Dong Seo Game Channel Bldg ., 660-11 Deungchon-Dong, Kangseo-Ku, Seoul, Korea	02-3664-8333
Singapore	MITSUBISHI ELECTRIC ASIA PTE LTD	307 ALEXANDRA ROAD \#05-01/02 MITSUBISHI ELECTRIC BUILDING SINGAPORE 159943	65-473-2308
Indonesia	P.T.SAHABAT INDONESIA.	JL Muara Karang Selatan Blok A/Utara No. 1 kav. 11 NO. 1 P.O. Box 5045/Jakarta/11050. Jakarta Indonesia.	021-6621780
Philippines	EDISON ELECTRIC INTEGRATED INC.	24th FI. Galleria Corporate Center Edsa Cr, Ortigas Ave. Quezon City, Metro Manila. Philippines.	02-643-8691
Thailand	UNITED TRADING \& IMPORT CO. LTD.	77/12 BAMRUNG MUANG ROAD, KLONG MAHANAK, POMPRAB, BANGKOK 10100. Thailand.	02-223-4200-3
Pakistan	Prince Electric Co.	16 Brandreth Road Lahore 54000. Pakistan.	042-7654342
Vietnam	Sa Giang Techno co., Ltd.(Setsuyo)	207/4 NGUYEN VAN THU ST., DA KAO WARD, DIST 1 HCMC, VIETNAM	848-821-5450
Lao PDR	SOCIETE LAO IMPORT-EXPORT	43-47 LANE XANG ROAD P.O. BOX 2789 VT VIENTIANE LAO PDR.	21-215043, 21-215110
Myanmer	PEACE MYANMAR ELECTRIC CO., LTD.	NO. 216, BO AUNG GYAW STREET, BOTATAUNG 11161, YANGON, MYANMAR.	951-295426
Nepal	Watt \& Volt House Co., Ltd.	KHA 2-65, Volt House Dilli Bazar Post Box: 2108, kathmandu, Nepal	977-1-411330
Australia	348 VICTORIA ROAD.	P.O. BOX: 11, RYDALMERE NSW 2166.	612-9684, 7245
New Zealand	Melco Sales (N.Z.) Ltd.	1 Parliament Street Lower Hutt. New Zealand.	644-569-7350
Colombia	Proelectrico LTDA.	Carrera 43G No. 27-12 P.O. Box 4346 Medellin. COLOMBIA.	(4) 2623038
Chile	RHONA S.A.	Vte. Agua Santa 4211 Casilla (P.O. Box) 30-D Viña Del Mar. Chile	(32) -611294
Uruguay	Fierro Vignoli S.A.	Avda. 1274 Montevideo. Uruguay.	(2) 921230
Peru	I.T.E.	Ingenieros s.a. Paseo de la Republica 3573 Lima 27. Peru.	(1) 221-2710
Venezuela	ADESCO C.A.	Calle 7,EDF.LOS ROBLES,LOCALES CYD URBANIZACION LA URBINA -EDO,MIRANDA P.O. BOX 78034 CARACAS 1074A	(2) 241-7634

Safety Tips: Be sure to read the instruction manual fully before using this product.

Safety Tips: Be sure to read the instruction manual fully befofe using this product.

[^0]: Here
 Inmax = Maximum rated current
 IN $\quad=$ Rated current
 Iu $\quad=$ Uninterrupted current
 LTD TIME = Long time delay tripping time
 Is = Short time delay pick-up current
 STD TIME = Short time delay tripping time
 $I_{1} \quad=$ Instantaneous pick-up current
 Ip = Pre-alarm (PAL) operating current
 $I_{G} \quad=$ Ground fault pick-up current
 GFR TIME = Ground fault operating time

